Средства защиты атмосферного воздуха от загрязнений. Какие бывают способы защиты атмосферы? Способы защиты атмосферы от загрязняющих веществ

  1. Атмосфера
  2. Контроль газовых смесей
  3. Парниковый эффект
  4. Киотский протокол
  5. Средства защиты
  6. Защита атмосферы
  7. Средства защиты
  8. Сухие пылеуловители
  9. Мокрые пылеуловители
  10. Фильтры
  11. Электрофильтры

Атмосфера

Атмосфера - газовая оболочка небесного тела, удерживаемая около него гравитацией.

Глубина атмосферы некоторых планет, состоящих в основном из газов (газовые планеты), может быть очень большой.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза.

Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Основные загрязнители атмосферного воздуха

Основными загрязнителями атмосферного воздуха, образующимися как в процессе хозяйственной деятельности человека, так и в результате природных процессов, являются:

  • диоксид серы SO2,
  • диоксид углерода CO2,
  • оксиды азота NOx,
  • твердые частицы – аэрозоли.

Доля этих загрязнителей составляет 98% в общем объеме выбросов вредных веществ.

Помимо этих основных загрязнителей, в атмосфере наблюдается еще более 70 наименований вредных веществ: формальдегид, фенол, бензол, соединения свинца и других тяжелых металлов, аммиак, сероуглерод и др.

Основные загрязнители атмосферы

Источники загрязнения атмосферы проявляются практически во всех видах хозяйственной деятельности человека. Их можно разделить на группы стационарных и подвижных объектов.

К первым относятся промышленные, сельскохозяйственные и другие предприятия, ко вторым - средства наземного, водного и воздушного транспорта.

Среди предприятий наибольший вклад в загрязнение атмосферы вносят:

  • теплоэнергетические объекты (тепловые электрические станции, отопительные и производственные котельные агрегаты);
  • металлургические, химические и нефтехимические заводы.

Загрязнение атмосферы и контроль ее качества

Контроль атмосферного воздуха осуществляется с целью установления соответствия его состава и содержания компонентов требованиям охраны окружающей среды и здоровья человека.

Контролю подлежат все источники образования загрязнений, поступающих в атмосферу, их рабочие зоны, а также зоны влияния этих источников на окружающую среду (воздух населенных пунктов, мест отдыха и др.)

Комплексный контроль качества включает следующие измерения:

  • химический состав атмосферного воздуха по ряду наиболее важных и значимых компонентов;
  • химический состав атмосферных осадков и снежного покрова
  • химический состав пылевых загрязнений;
  • химический состав жидкофазных загрязнений;
  • содержание в приземном слое атмосферы отдельных компонентов газовых, жидкофазных и твердофазных загрязнений (в том числе токсических, биологических и радиоактивных);
  • радиационный фон;
  • температура, давление, влажность атмосферного воздуха;
  • направление и скорость ветра в приземном слое и на уровне флюгера.

Данные этих измерений позволяют не только оперативно оценивать состояние атмосферы, но и прогнозировать неблагоприятные метеорологические условия.

Контроль газовых смесей

Контроль состава газовых смесей и содержания в них примесей основан на сочетании качественного и количественного анализа. При качественном анализе выявляют присутствие в атмосфере специфических особо опасных примесей без определения их содержания.

Применяют органолептический, индикаторный методы и метод тест-проб. Органолептическое определение основано на способности человека узнавать запах специфического вещества (хлор, аммиак, сера и др.), изменение окраски воздуха, чувствовать раздражающее действие примесей.

Экологические последствия загрязнения атмосферы

К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

  • возможное потепление климата (парниковый эффект);
  • нарушение озонового слоя;
  • выпадение кислотных дождей;
  • ухудшение здоровья.

Парниковый эффект

Парниковый эффект – это повышение температуры нижних слоев атмосферы Земли по сравнению с эффективной температурой,т.е. температурой теплового излучения планеты, наблюдаемого из космоса.

Киотский протокол

В декабре 1997 г. на встрече в Киото (Япония), посвященной глобальному изменению климата, делегатами из более чем 160 стран была принята конвенция, обязывающая развитые страны сократить выбросы СО2. Киотский протокол обязывает 38 индустриально развитых стран сократить к 2008–2012 г.г. выбросы СО2 на 5 % от уровня 1990 г.:

  • Европейский союз должен сократить выбросы СО2 и других тепличных газов на 8 %,
  • США – на 7%,
  • Япония – на 6 %.

Средства защиты

Основными путями снижения и полной ликвидации загрязнения атмосферы служат:

  • разработка и внедрение очистных фильтров на предприятиях,
  • использование экологически безопасных источников энергии,
  • использование безотходной технологии производства,
  • борьба с выхлопными газами автомобилей,
  • озеленение городов и поселков.

Очистка промышленных отходов не только предохраняет атмосферу от загрязнений, но и дает дополнительное сырье и прибыли предприятиям.

Защита атмосферы

Один из способов предохранения атмосферы от загрязнения - переход на новые экологически безопасные источники энергии. Например, строительство электростанций, использующих энергию приливов и отливов, тепло недр, применение гелиоустановок и ветряных двигателей для получения электроэнергии.

В 1980-е годы перспективным источником энергии считались атомные электростанции (АЭС). После чернобыльской катастрофы число сторонников широкого использования атомной энергии уменьшилось. Эта авария показала, что атомные электростанции требуют повышенного внимания к системам их безопасности. Альтернативным источником энергии академик А. Л. Яншин, например, считает газ, которого в России в перспективе можно добывать около 300 трлн кубометров.

Средства защиты

  • Очистка технологических газовых выбросов от вредных примесей.
  • Рассеивание газовых выбросов в атмосфере. Рассеивание осуществляется с помощью высоких дымовых труб (высотой более 300 м). Это временное, вынужденное мероприятие, которое осуществляется вследствие того, что существующие очистные сооружения не обеспечивают полной очистки выбросов от вредных веществ.
  • Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина СЗЗ устанавливается в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ (50–1000 м).

Архитектурно-планировочные решения – правильное взаимное размещение источников выбросов и населенных мест с учетом направления ветров, сооружение автомобильных дорог в обход населенных пунктов и др.

Оборудование для очистки выбросов

  • устройства для очистки газовых выбросов от аэрозолей (пыли, золы, сажи);
  • устройства для очистки выбросов от газо- и парообразных примесей (NO, NO2, SO2, SO3 и др.)

Сухие пылеуловители

Сухие пылеуловители предназначены для грубой механической очистки от крупной и тяжелой пыли. Принцип работы – оседание частиц под действием центробежной силы и силы тяжести. Широкое распространение получили циклоны различных видов: одиночные, групповые, батарейные.

Мокрые пылеуловители

Мокрые пылеуловители характеризуются высокой эффективностью очистки от мелкодисперсной пыли размером до 2 мкм. Работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции или броуновского движения.

Запыленный газовый поток по патрубку 1 направляется на зеркало жидкости 2, на котором осаждаются наиболее крупные частицы пыли. Затем газ поднимается навстречу потоку капель жидкости, подаваемой через форсунки, где происходит очистка от мелких частиц пыли.

Фильтры

Предназначены для тонкой очистки газов за счет осаждения частиц пыли (до 0,05 мкм) на поверхности пористых фильтрующих перегородок.

По типу фильтрующей загрузки различают тканевые фильтры (ткань, войлок, губчатая резина) и зернистые.

Выбор фильтрующего материала определяется требованиями к очистке и условиями работы: степень очистки, температура, агрессивность газов, влажность, количество и размер пыли и т.д.

Электрофильтры

Электрофильтры – эффективный способ очистки от взвешенных частиц пыли (0,01 мкм), от масляного тумана.

Принцип действия основан на ионизации и осаждении частиц в электрическом поле. У поверхности коронирующего электрода происходит ионизация пылегазового потока. Приобретая отрицательный заряд, частицы пыли движутся к осадительному электроду, имеющему знак, противоположный заряду коронирующего электрода. По мере накопления на электродах частицы пыли падают под действием силы тяжести в сборник пыли или удаляются встряхиванием.

Способы очистки от газо- и парообразных примесей

Очистка от примесей путем каталитического превращения. С помощью этого метода превращают токсичные компоненты промышленных выбросов в безвредные или менее вредные вещества путем введения в систему катализаторов (Pt, Pd, Vd):

  • каталитическое дожигание СО до СО2;
  • восстановление NОx до N2.

Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента, например, используют воду для улавливания таких газов как NH3, HF, HCl.

Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов – твердых тел с ультрамикроскопической структурой (активированный уголь, цеолиты, Al2O3.

1.Требования к выбросам в атмосферу.

Средства защиты должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровень не выше ПДК: по каждому вредному веществу, где - фоновая концентрация.

А при наличии нескольких вредных веществ однонаправленного действия условие (*) в гл.1.4 §2. Соблюдение этих требований достигается локализацией вредных веществ в месте их образования отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортерные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

а) вывод токсичных веществ из помещений общеобменной вентиляцией;

б) локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственные помещения, если воздух соответствует нормативным требованиям к приточному воздуху;

в) локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;

г) очистка технологичных газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;

д) очистка отработавших газов в специальных аппаратах и выброс в атмосферу или производственную зону.

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок. Предельно допустимые выбросы ГТДУ самолетов гражданской авиации определены ГОСТ 17.2.2.04 – 86; выбросы автомобилей с ДВС ГОСТ 17.2.2.03 – 87 и др.; для промышленных предприятий ПДВ устанавливается требованиями ГОСТ 17.2.3.02 – 78.

2.Рассеивание выбросов в атмосфере.

Основным документом, регламентирующим расчет рассеивания и определения приземных концентраций выбросов промышленных предприятий, является «Методика расчета концентрации в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД – 86.

При определении ПДВ примеси от расчетного источника необходимо учитывать ее концентрацию в атмосфере, обусловленную выбросами от других источников. Для случаев рассеивания нагретых выбросов через одиночную незатененную трубу:

, где

Н – высота трубы;

Q – объем расходуемой газовоздушной смеси, выбрасываемой через трубу;

Это разность между температурой, выбрасываемой газовоздушной смеси и температурой окружающего атмосферного воздуха, равной средней температуре самого жаркого месяца в 13 часов;

А – коэффициент, зависящий от температурного градиента атмосферыи определяющий условия вертикального и горизонтального рассеивания вредностей.

K F - коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере;

m и n – безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья трубы.

3. Оборудование для очистки выбросов.

Аппараты очистки вентиляции и технологических выбросов в атмосферу делятся на:

а) пылеуловители (сухие, электрические, фильтры, мокрые);

б) туманоуловители (низкоскоростные и высокоскоростные);

в) аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтролизаторы);

г) аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители).

Их работа характеризуется рядом основных параметров:

а) эффективность очистки: , где

и - массовые концентрации примесей в газе до и после аппарата.

б) гидравлическое сопротивление аппаратов очистки: , где

и - давление газового потока на входе и выходе аппарата;

Коэффициент гидравлического сопротивления аппарата;

и - плотность и скорость газа в расчетном сечении аппарата.

Значение рассчитывают экспериментально, либо по этой формуле.

в) потребляемая мощность побудителя движения газов: , где

Q - объемный расход очищаемого газа;

к – коэффициент запаса мощности

- КПД передачи мощности от электродвигателя к вентилятору;

КПД вентилятора.

Требования к выбросам в атмосферу. Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие

С+с ф £ ПДК (6.2)

по каждому вредному веществу (с ф -фоновая концентрация), а при наличии нескольких вредных веществ однонаправленного действия - условие (3.1). Соблюдение этих требований достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

Рис. 6.2. Схемы использования средств защиты атмосферы:

/-источник токсичных веществ; 2- устройство для локализации токсичных веществ (местный отсос); 3- аппарат очистки; 4- устройство для забора воздуха из атмосферы; 5- труба для рассеивания выбросов; 6- устройство (воздуходувка) для подачи воздуха на разбавление выбросов

На практике реализуются следующие варианты защиты атмосферного воздуха:

Вывод токсичных веществ из помещений общеобменной вентиляцией;

Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху (рис. 6.2, а);

Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере (рис. 6.2, б);

Очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом (рис. 6.2, в);

Очистка отработавших газов энергоустановок, например двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.) (рис. 6.2, г).

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок. Предельно допустимые выбросы ГТДУ самолетов гражданской авиации определены ГОСТ 17.2.2.04-86, выбросы автомобилей с ДВС-ГОСТ 17.2.2.03-87 и рядом других.

В соответствии с требованиями ГОСТ 17.2.3.02-78 для каждого Чроектируемого и действующего промышленного предприятия устанпвливается ПДВ вредных веществ в атмосферу при условии, что ыбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создадут Риземную концентрацию, превышающую ПДК.



Рассеивание выбросов в атмосфере . Технологические газы и вентиляционный воздух после выхода из труб или вентиляционных устройств, подчиняется законам турбулентной диффузии. На рис. 6.3 показано распределение концентрации вредных веществ в атмосфере под факелом организованного высокого источника выброса. По мере удаления от трубы в направлении распространения промышленных выбросов можно условно выделить три зоны загрязнения атмосферы:

переброса факела выбросов Б, характеризующаяся относительно невысоким содержанием вредных веществ в приземном слое атмосферы;

задымления В с максимальным содержанием вредных веществ и постепенного снижения уровня загрязнения Г. Зона задымления наиболее опасна для населения и должна быть исключена из селитебной застройки. Размеры этой зоны в зависимости от метеорологических условий находятся в пределах 10...49 высот трубы.

Максимальная концентрация примесей в приземной зоне прямо пропорциональна производительности источника и обратно пропорциональна квадрату его высоты над землей. Подъем горячих струй почти полностью обусловлен подъемной силой газов, имеющих более высокую температуру, чем окружающий воздух. Повышение температуры и момента количества движения выбрасываемых газов приводит к увеличению подъемной силы и снижению их приземной концентрации.

Рис. 6.3. Распределение концентрации вредных веществ в

атмосфере у земной поверхности от организованного высокого

источника выбросов:

А - зона неорганизованного загрязнения; Б - зона переброса факела; В - зона задымления; Г - зона постепенного снижения уровня загрязнения

Распространение газообразных примесей и пылевых частиц диаметром менее 10 мкм, имеющих незначительную скорость осаждения, подчиняется общим закономерностям. Для более крупных частиц эта закономерность нарушается, так как скорость их осаждения под действием силы тяжести возрастает. Поскольку при очистке от пыли крупные частицы улавливаются, как правило, легче, чем мелкие, в выбросах остаются очень мелкие частицы; их рассеивание в атмосфере рассчитывают так же, как и газовые выбросы.

В зависимости от расположения и организации выбросов источники загрязнения воздушного пространства подразделяют на затененные и незатененные, линейные и точечные. Точечные источники используют тогда, когда удаляемые загрязнения сосредоточены в одном месте. К ним относят выбросные трубы, шахты, крышные вентиляторы и другие источники. Выделяющиеся из них вредные вещества при рассеивании не накладываются одно на другое на расстоянии двух высот здания (с заветренной стороны). Линейные источники имеют значительную протяженность в направлении, перпендикулярном к ветру. Это аэрационные фонари, открытые окна, близко расположенные вытяжные шахты и крышные вентиляторы.

Незатененные, или высокие источники свободно расположены в деформированном потоке ветра. К ним относят высокие трубы, а также точечные источники, удаляющие загрязнения на высоту, превышающую 2,5 Н зд. Затененные, или низкие источники расположены в зоне подпора или аэродинамической тени, образующейся на здании или за ним (в результате обдувания его ветром) на высоте h£, 2,5 Н зд.

Основным документом, регламентирующим расчет рассеивания и определения приземных концентраций выбросов промышленных предприятий, является «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86». Эта методика позволяет решать задачи по определению ПДВ при рассеивании через одиночную незатененную трубу, при выбросе через низкую затененную трубу и при выбросе через фонарь из условия обеспечения ПДК в приземном слое воздуха.

При определении ПДВ примеси от расчетного источника необходимо учитывать ее концентрацию с ф в атмосфере, обусловленную выбросами от других источников. Для случая рассеивания нагретых выбросов через одиночную незатененную трубу

где Н- высота трубы; Q - объем расходуемой газовоздушной смеси, выбрасываемой через трубу; ΔТ-разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего атмосферного воздуха, равной средней температуре самого жаркого месяца в 13 ч; А - коэффициент, зависящий от температурного градиента атмосферы и определяющий условия вертикального и горизонтального рассеивания вредностей; k F - коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере; m и n - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья трубы.

Оборудование для очистки выбросов . В тех случаях, когда реальные выбросы превышают ПДВ, необходимо в системе выброса использовать аппараты для очистки газов от примесей.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорб-ционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются эффективность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

где С вх и С вых -массовые концентрации примесей в газе до и после аппарата.

В ряде случаев для пылей используется понятие фракционной эффективности очистки

где С вх i и С вх i -массовые концентрации i-й фракции пыли до и после пылеуловителя.

Для оценки эффективности процесса очистки также используют коэффициент проскока веществ К через аппарат очистки:

Как следует из формул (6.4) и (6.5), коэффициент проскока и эффективность очистки связаны соотношением К= 1 - h|.

Гидравлическое сопротивление аппаратов очистки Δр определяют как разность давлений газового потока на входе аппарата р вх и выходе р вых из него. Значение Δр находят экспериментально или рассчитывают по формуле

где ς- коэффициент гидравлического сопротивления аппарата; ρ и W- плотность и скорость газа в расчетном сечении аппарата.

Если в процессе очистки гидравлическое сопротивление аппарата изменяется (обычно увеличивается), то необходимо регламентировать его начальное Δр нач и конечное значение Δр кон. При достижении Δр = Δр кон процесс очистки нужно прекратить и провести регенерацию (очистку) аппарата. Последнее обстоятельство имеет принципиальное значение для фильтров. Для фильтров Δркой = (2...5)Δр нач

Мощность N побудителя движения газов определяется гидравлическим сопротивлением и объемным расходом Q очищаемого газа

где k- коэффициент запаса мощности, обычно k= 1,1...1,15; h м - КПД передачи мощности от электродвигателя к вентилятору; обычно h м = 0,92...0,95; h а - КПД вентилятора; обычно h а = 0,65...0,8.

Широкое применение для очистки газов от частиц получили сухие пылеуловители - циклоны (рис. 6.4) различных типов. Газовый поток вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит при повороте газового потока в бункере на 180°. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающему циклон через выходную трубу 3. Для нормальной работы циклона необходима герметичность бункера. Если бункер негерметичен, то из-за подсоса дружного воздуха происходит вынос пыли с потоком через выходную трубу.

Многие задачи по очистке газов от пыли с успехом решаются цилиндрическими (ЦН-11 ЦН-15, ЦН-24, ЦП-2) и коническими (СК-Цц 34, СК-ЦН-34М и СДК-ЦН-33) циклонами НИИОГАЗа. Цилиндрические циклоны НИИО-ГАЗа предназначены для улавливания сухой пыли аспирационных систем. Их рекомендуется использовать для предварительной очистки газов и устанавливать перед фильтрами или электрофильтрами.

Конические циклоны НИИОГАЗа серии СК предназначенные для очистки газа от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН, что достигается за счет большего гидравлического сопротивления циклонов серии СК.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки у таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Методика расчета циклонов приведена в работе .

Рис. 6.4. Схема циклона

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Аэрозольные частицы, поступающие в зону между коронирующим 7 и осадительным 2 электродами (рис. 6.5), адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получают тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Процесс зарядки частиц зависит от подвижности ионов, траектории движения и времени пребывания частиц в зоне коронирующего заряда. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунды. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Рис. 6.5. Схема электрофильтра

Большое значение для процесса осаждения пьши на электродах имеет электрическое сопротивление слоев пыли. По величине электрического сопротивления различают:

1) пыли с малым удельным электрическим сопротивлением (< 10 4 Ом"см), которые при соприкосновении с электродом мгновенно теряют свой заряд и приобретают заряд, соответствующий знаку электрода, после чего между электродом и частицей возникает сила отталкивания, стремящаяся вернуть частицу в газовый поток; противодействует этой силе только сила адгезии, если она оказывается недостаточной, то резко снижается эффективность процесса очистки;

2) пыли с удельным электрическим сопротивлением от 10 4 до 10 10 Ом-см; они хорошо осаждаются на электродах и легко удаляются с них при встряхивании;

3) пыли с удельным электрическим сопротивлением более 10 10 Ом-см; они труднее всего улавливаются в электрофильтрах, так как на электродах частицы разряжаются медленно, что в значительной степени препятствует осаждению новых частиц.

В реальных условиях снижение удельного электрического сопротивления пыли можно осуществить увлажнением запыленного газа.

Определение эффективности очистки запыленного газа в электрофильтрах обычно проводят по формуле Дейча:

где W Э - скорость движения частицы в электрическом поле, м/с;

F уд -удельная поверхность осадительных электродов, равная отношению поверхности осадительных элементов к расходу очищаемых газов, м 2 с/м 3 . Из формулы (6.7) следует, что эффективность очистки газов зависит от показателя степени W э F уд:

W э F уд 3,0 3,7 3,9 4,6
η 0,95 0,975 0,98 0,99

Конструкцию электрофильтров определяют состав и свойства очи-щаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и т. д. В Лромышленности используют несколько типовых конструкций сухих и мокрых электрофильтров , применяемых для очистки технологических выбросов (рис. 6.6).

Эксплуатационные характеристики электрофильтров весьма чувст-ьительны к изменению равномерности поля скоростей на входе в фильтр. Для получения высокой эффективности очистки необходимо обеспечить равномерный подвод газа к электрофильтру путем правильной организации подводящего газового тракта и применения распределительных решеток во входной части электрофильтра

Рис. 6.7. Схема фильтра

Для тонкой очистки газов от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред. Принципиальная схема процесса фильтрования в пористой перегородке показана на рис. 6.7. Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.

По типу перегородки фильтры бывают: с зернистыми слоями (неподвижные, свободно насыпанные зернистые материалы, псевдо-ожиженные слои); с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); с полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и стружка и др.); с жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Наибольшее распространение в промышленности для сухой очистки газовых выбросов получили рукавные фильтры (рис. 6.8).

Аппараты мокрой очистки газов -мокрые пылеуловители - имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с d ч > 0,3 мкм, а также возможностью очистки от пыли нагретых и взрывоопасных газов. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область их применения: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении газов до температуры точки росы; необходимость Издания оборотных систем подачи воды в пылеуловитель.

Рис. 6.8. Рукавный фильтр:

1 - рукав; 2 - корпус; 3 - выходной патрубок;

4 - устройство для регенерации;

5- входной патрубок

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Рис. 6.9. Схема скруббера Вентури

Среди аппаратов мокрой очистки с осаждением частиц пыли на Поверхность капель на практике более применимы скрубберы Вентури (рис. 6.9). Основная часть скруббера -сопло Вентури 2 В его конфузорную часть подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости (W τ = 15...20 м/с) до скорости в узком сечении сопла 30...200 м/с и более. Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части сопла поток тормозится до скорости 15...20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона.

Скрубберы Вентури обеспечивают высокую эффективность очистки аэрозолей при начальной концентрации примесей до 100 г/м 3 . Если удельный расход воды на орошение составляет 0,1...6,0 л/м 3 , то эффективность очистки равна:

d ч,мкм. …………… . η ……………………. 0.70...0.90 5 0.90...0.98 0.94...0.99

Скрубберы Вентури широко используют в системах очистки газов от туманов. Эффективность очистки воздуха от тумана со средним размером частиц более 0,3 мкм достигает 0,999, что вполне сравнимо с высокоэффективными фильтрами.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной (рис. 6.10, а) и переливной решетками (рис. 6.10, б). В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли ~ 0,95...0,96 при удельных расходах води 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Pис. 6.10. Схема барботажно-пенного пылеуловителя с

провальной (а) и переливной (б) решетками

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители. Принцип их действия основан на осаждении капель на поверхности пор с последующим отеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации W ф. Туманоуловители делят на низкоскоростные (W ф ≤д 0,15 м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (W ф = 2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

Фильтрующий элемент низкоскоростного туманоуловителя показан на рис. 6.11. В пространство между двумя цилиндрами 3, изготовленными из сеток, помещают волокнистый фильтроэлемент 4, который крепится с помощью фланца 2 к корпусу туманоуловителя 7. Жидкость, осевшая на фильтроэлементе; стекает на нижний фланец 5 и через трубку гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые низкоскоростные туманоуловители обеспечивают высокую эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большего размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5...15 см, гидравлическое сопротивление сухих фильтроэлементов -200...1000 Па.

Рис. 6.11. Схема фильтрующего элемента

низкоскоростного тума-ноуловителя

Высо коскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9...0,98 при Д/»= 1500...2000 Па, от тумана с частицами менее 3 мкм. В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брыз-гоунос обычно возникает при скоростях 1,7...2,5 м/с). Значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

На рис. 6.12 показана схема высокоскоростного волокнистого туманоуловителя с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 7, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэле-мент нижней частью установлены в слой жидкости

Рис. 6.12. Схема высокоскоростного туманоуловителя

Для очистки аспирационного воздуха ванн хромирования, содержащего туман и брызги хромовой и серной кислот, применяют волокнистые фильтры типа ФВГ-Т. В корпусе размещена кассета с фильтрующим материалом - иглопробивным войлоком, состоящим из волокон диаметром 70 мкм, толщиной слоя 4...5 мм.

Метод абсорбции - очистка газовых выбросов от газов и паров - основан на поглощении последних жидкостью. Для этого используют абсорберы. Решающим условием для применения метода абсорбции является растворимость паров или газов в абсорбенте. Так, для удаления из технологических выбросов аммиака, хлоро- или фтороводорода целесообразно применять в качестве абсорбента воду. Для высокоэффективного протекания процесса абсорбции необходимы специальные конструктивные решения. Они реализуются в виде насадочных башен (рис. 6.13), форсуночных барботажно-пенных и других скрубберов. Описание процесса очистки и расчет аппаратов приведены в работе .

Р и с. 6.13. Схема насадочной башни:

1 - насадка; 2 - разбрызгиватель

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вен-тури и т. п. Хемосорбция - один из распространенных методов очистки отходящих газов от оксидов азота и паров кислот. Эффективность очистки от оксидов азота составляет 0,17...0,86 и от паров кислот - 0,95.

Метод адсорбции основан на способности некоторых тонкодисперсных твердых тел селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. Для этого метода используют адсорбенты. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы. Так, удельная поверхность активированных углей достигает 10 5 …10 6 м 2 /кг. Их применяют для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов. В качестве адсорбентов применяют также простые и комплексные оксиды (активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита), которые обладают большей селективной способностью, чем активированные угли.

Конструктивно адсорберы выполняют в виде емкостей, заполнений пористым адсорбентом, через который фильтруется поток очищаемого газа. Адсорберы применяют для очистки воздуха от паров Растворителей, эфира, ацетона, различных углеводородов и т. п.

Адсорберы нашли широкое применение в респираторах и противогазах. Патроны с адсорбентом следует использовать строго в соответствии с условием эксплуатации, указанным в паспорте респиратора или противогаза. Так, фильтрующий противогазовый респиратор РПГ-67 (ГОСТ 12.4.004-74) следует использовать в соответствии с рекомендациями, приведенными в табл. 6.2 и 6.3.

Для очистки газов от вредных газообразных примесей используют две группы методов - некаталитические и каталитические. Методы первой группы основаны на выведении примесей из газообразной смеси с помощью жидких абсорберов) и твердых (адсорберов) поглотителей. Методы второй группы заключаются в том, что вредные примеси вступают химическую реакцию и превращаются в безвредные вещества поверхности катализаторов. Еще более сложный и многоступенчатый процесс представляет собой очистка сточных вод.

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют :

  • - замену менее экологичных видов топлива экологичными;
  • - сжигание топлива по специальной технологии;
  • - создание замкнутых производственных циклов.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам:

  • 1) по абсорбируемому компоненту;
  • 2) по типу применяемого абсорбента;
  • 3) по характеру процесса - с циркуляцией и без циркуляции газа;
  • 4) по использованию абсорбента - с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические);
  • 5) по использованию улавливаемых компонентов - с рекуперацией и без рекуперации;
  • 6) по типу рекуперируемого продукта;
  • 7) по организации процесса - периодические и непрерывные;
  • 8) по конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов; концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком - невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции .

В рекуперационной технике наряду с другими методами для улавливания паров летучих растворителей используют методы конденсации и компримирования.

В основе метода конденсации лежит явление уменьшения давления насыщенного пара растворителя при понижении температуры. Смесь паров растворителя с воздухом предварительно охлаждают в теплообменнике, а затем конденсируют. Достоинствами метода являются простота аппаратурного оформления и эксплуатации рекуперационной установки. Однако проведение процесса очистки паровоздушных смесей методом конденсации сильно осложнено, поскольку содержание паров летучих растворителей в этих смесях обычно превышает нижний предел их взрываемости. К недостаткам метода относятся также высокие расходы холодильного агента и электроэнергии и низкий процент конденсации паров (выход) растворителей - обычно не превышает 70-90%. Метод конденсации является рентабельным лишь при содержании паров растворителя в подвергаемом очистке потоке 100 г/м 3 , что существенно ограничивает область применения установок конденсационного типа.

Метод компримирования базируется на том же явлении, что и метод конденсации, но применительно к парам растворителей, находящимся под избыточным давлением. Однако метод компримирования более сложен в аппаратурном оформлении, так как в схеме улавливания паров растворителей необходим компримирующий агрегат. Кроме того, он сохраняет все недостатки, присущие методу конденсации, и не обеспечивает возможность улавливания паров летучих растворителей при их низких концентрациях.

Термические методы (методы прямого сжигания) применяют для обезвреживания газов от легкоокисляемых токсичных, а также дурнопахнущих примесей. Методы основаны на сжигании горючих примесей в топках печей или факельных горелках. Преимуществом метода является простота аппаратуры, универсальность использования. Недостатки: дополнительный расход топлива при сжигании низкоконцентрированных газов, а также необходимость дополнительной абсорбционной или адсорбционной очистки газов после сжигания.

Следует отметить, что сложный химический состав выбросов и высокие концентрации токсичных компонентов заранее предопределяют многоступенчатые схемы очистки, представляющие собой комбинацию разных методов .

Лекция 11. Коллективные средства защиты человека на производстве

Окружающий человека атмосферный воздух непрерывно подвергается загрязнению. Воздух производственного помещения загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух промышленных площадок и населенных мест загрязняется технологическими выбросами цехов, выбросами ТЭС, транспортных средств.

Воздух жилых помещений загрязняется продуктами сгорания природного газа и других видов топлива, испарениями растворителей, моющих средств, древесно-стружечных конструкций и т.п., а также токсичными веществами, поступающими в жилые помещения с притоком вентиляционного воздуха. В летний период при средней наружной температуре 20 0 С в жилые помещения проникает около 90% примесей наружного воздуха, в переходный период при t = 25 0 С – 40%, в зимнее время – до 30%.

Источниками загрязнения атмосферного воздуха производственных помещений являются:

1. В литейных цехах – это пыле- и газовыделения от вагранок, электродуговых и индукционных печей, участки складирования и переработки шихты (компоненты литья) и формовочных материалов, участки выбивки и очистки литья.

2. В кузнечно-прессовых цехах – пыль, оксид углерода, оксид серы и др. вредные вещества.

3. В гальванических цехах – это вредные вещества, находящиеся в виде тонкодисперсного тумана, паров и газов. Наиболее интенсивно вредные вещества выделяются в процессах кислотного и щелочного травления. При нанесении гальванических покрытий – это фтороводород и т.п.

4. При механической обработке металлов на станках – пыль, туман, масла и эмульсии.

5. На участках сварки и резки металлов – пыль, газы (фтороводород и др.).

6. На участках пайки и лужения – токсичные газы (оксид углерода, фтороводород), аэрозоли (свинец и его соединения).

7. В окрасочных цехах – токсичные вещества при обезжиривании и аэрозоли от лака и красок.

8. От работы различных энергетических установок (ДВС и др.)

Для удаления и очистки воздуха в производственных помещениях применяются различные системы очистки и локализации вредных веществ.

1. Вывод токсичных веществ из помещений общеобменной вентиляцией;

2. Локализация токсичных веществ в зоне их образования местной вентиляцией с очисткой загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;


3. Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере.

Рисунок 3.

1 – источники токсичных веществ;

2 – устройства для локализации токсичных веществ (местный отсос);

3 – аппарат очистки.

4. Очистка технологических газовых выбросов в специальных аппаратах; в ряде случаев перед выбросом отходящие газы разбавляются атмосферным воздухом;

5. Отчистка отработанных газов энергоустановок (например, ДВС) в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т.д.).

В тех случаях, когда реальные выбросы превышают предельно допустимые выбросы (ПДВ) с учетом уже существующих загрязнений атмосферы или, точнее, существующих уже в атмосфере ее компонентов, необходимо в системе выброса использовать аппараты для очистки газов и примесей.

Рисунок 4.

1–источник токсичных веществ и технологических газов;

2 – аппарат очистки;

3 – труба для рассеивания выбросов;

4 – устройство (воздуходувка для подачи воздуха на разбавление выбросов).

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

Пылеуловители (сухие, электрические, фильтры мокрые);

Туманоуловители (низкоскоростные и высокоскоростные);

Аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, абсорбционные и нейтролизаторы);

Аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители).

Широкое применение для очистки газов от частиц получили сухие пылеуловители – циклоны.

Наиболее совершенным способом очистки газов от взвешенных в них частиц пыли и туманов являются электрофильтры.

Для тонкой очистки газов от частиц и капельной жидкости применяются различные фильтры.

Аппараты мокрой очистки газов имеют широкое распространение и применяются для очистки от мелкодисперсной пыли с d 2 ≥ 0,3 мкм, а также для очистки от пыли нагретых и взрывоопасных газов.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры туманоуловители.

Метод абсорбции – очистка газовых выбросов от газов и паров – основан на поглощении последних жидкостью. Решающим условием для применения этого метода является растворимость газов и паров в воде. Это могут быть, например, технологические выбросы аммиака, хлоро- или фторо- водородов.

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых и малолетучих химических соединений (газы от оксидов азота и паров кислот).

Метод абсорбции основан на способности некоторых тонкодисперсных твердых тел в качестве абсорбента (активированный глинозем, силикагель, активированный оксид алюминия и т.д.) извлекать и концентрировать на своей поверхности отдельные компоненты выбросов газовой смеси. Их применяют для отчистки воздуха от паров растворителей, эфира, ацетона, различных углеводородов и т.д. Абсорбенты нашли широкое применение в респираторах и противогазах.

Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных и технологических выбросов, сгорать с образованием менее токсичных веществ.

Что еще почитать