Содержание кислорода в земной коре. История свободного кислорода в земной коре. Использование кислорода и озона в промышленности

Химический состав земной коры

В составе земной коры - множество элементов, но основную её часть составляют кислород и кремний.

Средние значения химических элементов в земной коре носят название кларков. Название было введено советским геохимиком А.Е. Ферсманом в честь американского геохимика Франка Уиглсуорта Кларка, который проанализировав результаты анализа тысяч образцов пород рассчитал средний состав земной коры. Вычисленный Кларком состав земной коры был близок к граниту - распространённой магматической горной породе в континентальной земной коре Земли.

После Кларка определением среднего состава земной коры занялся норвежский геохимик Виктор Гольдшмидт. Гольдшмидт сделал предположение, что ледник, двигаясь по континентальной коре соскребает и смешивает выходящие на поверхность горные породы. Поэтому ледниковые отложения или морены отражают средний состав земной коры. Проанализировав состав ленточных глин, отложившихся на дне Балтийского моря во время последнего оледенения, учёный получил состав земной коры, который очень походил на состав земной коры вычисленный Кларком.

В последствии состав земной коры изучался советскими геохимиками Александром Виноградовым, Александром Роновым, Алексеем Ярошевским, немецким учёным Г. Ведеполем.

После анализа всех научных работ было выяснено, что наиболее распространенным элементом в составе земной коре является кислород. Его кларк - 47%. Следующий аосле кислорода по распространенности химический элемент - кремний с кларком 29,5%. Остальными распространенными элементами являются: алюминий (кларк 8,05), железо (4,65), кальций (2,96), натрий (2,5), калий (2,5), магний (1,87) и титан (0,45). В совокупности на эти элементы составляют 99,48% от всего состава земной коры; они образуют многочисленные химические соединения. Кларки остальных 80 элементов составляют всего 0,01-0,0001 и поэтому такие элементы называются редкими. Если же элемент не только редкий, но и обладает слабой способностью к концентрированию, его называют редким рассеянным.

В геохимии также употребляют термин «микроэлементы», под которым понимают элементы, кларки которых в данной системе менее 0,01. А.Е. Ферсман построил график зависимости атомных кларков для чётных и нечётных элементов периодической системы. Выявилось, что с усложнением строения атомного ядра кларки уменьшаются. Но линии, построенные Ферсманом, оказались не монотонными, а ломанными. Ферсман прочертил гипотетическую среднюю линию: элементы, расположенные выше этой линии, он назвал избыточными (О, Si, Са, Fe, Ва, РЬ и т.д.), ниже - дефицитными (Ar, Не, Ne, Sc, Со, Re и т.д.).

Ознакомиться с распространением важнейших химических элементов в земной коре можно с помощью этой таблицы:

Хим. элемент Порядковый номер Содержание, в % от массы всей земной коры Молярная масса Содержание, % количество вещества
Кислород O 8 49,13 16 53,52
Кремний Si 14 26,0 28,1 16,13
Алюминий Al 13 7,45 27 4,81
Железо Fe 26 4,2 55,8 1,31
Кальций Ca 20 3,25 40,1 1,41
Натрий Na 11 2,4 23 1,82
Калий K 19 2,35 39,1 1,05
Магний Mg 12 2,35 34,3 1,19
Водород H 1 1,00 1 17,43
Титан Ti 22 0,61 47,9 0,222
Углерод C 6 0,35 12 0,508
Хлор Cl 17 0,2 35,5 0,098
Фосфор Р 15 0,125 31,0 0,070
Сера S 16 0,1 32,1 0,054
Марганец Mn 25 0,1 54,9 0,032
Фтор F 9 0,08 19,0 0,073
Барий Ва 56 0,05 137,3 0,006
Азот N 7 0,04 14,0 0,050
Прочие элементы ~0,2

Распределение химических элементов в земной коре подчиняется следующим закономерностям:

1. Закону Кларка-Вернадского, который гласит, что все химические элементы есть везде (закон о всеобщем рассеянии);

2. С усложнением строения атомного ядра химических элементов, его утяжелением, кларки элементов уменьшаются (Ферсман);

3. В земной коре преобладают элементы с чётными порядковыми номерами и атомными массами.

4. Среди соседних элементов у четных всегда кларки выше, чем у нечетных (установили итальянский ученый Оддо и американский Гаркис).

5. Особенно велики кларки элементов, атомная масса которых делится на 4 (O, Mg, Si, Са...), а начиная с Аl, наибольшими кларками обладает каждый 6-й элемент (O, Si, Са, Fe).

Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

Природный кислород состоит из трех стабильных изотопов: и .

Атмосферный воздух представляет собой смесь многих газов. Кроме кислорода и азота, образующих основную массу воздуха, в состав его входят в небольшом количестве благородные газы, диоксид углерода и водяные пары. Помимо перечисленных газов, в воздухе содержится еще большее или меньшее количество пыли и некоторые случайные примеси. Кислород, азот и благородные газы считаются постоянными составными частями , так как их содержание в воздухе практически повсюду одинаково. Содержание же диоксида углерода, водяных паров и пыли может изменяться в зависимости от условий.

Диоксид углерода образуется в природе при горении дерева и угля, дыхании животных, гниении. Особенно много как продукта сжигания огромных количеств топлива поступает в атмосферу в больших промышленных центрах.

В некоторых местах земного шара выделяется в воздух вследствие вулканической деятельности, а также из подземных источников. Несмотря на непрерывное поступление диоксида углерода в атмосферу, содержание его в воздухе довольно постоянно и составляет в среднем около . Это объясняется поглощением диоксида углерода растениями, а также его растворением в воде.

Водяные пары могут находиться в воздухе в различных количествах. Содержание их колеблется от долей процента до нескольких процентов и зависит от местных условий и от температуры.

Пыль, находящаяся в воздухе, состоит главным образом из мельчайших частиц минеральных веществ, образующих земную кору, частичек угля, пыльцы растений, а также различных бактерий. Количество пыли в воздухе очень изменчиво: зимой ее меньше, летом больше.

После дождя воздух становится чище, так как капли дождя увлекают с собой пыль.

Наконец, к случайным примесям воздуха относятся такие вещества, как сероводород и аммиак, выделяющиеся при гниении органических остатков; диоксид серы , получающийся при обжиге сернистых или при горении угля, содержащего серу; оксиды азота, образующиеся при электрических разрядах в атмосфере, и т. п. Эти примеси обычно встречаются в ничтожных количествах и постоянно удаляются из воздуха, растворяясь в дождевой воде.

Если учитывать только постоянные составные части воздуха, то его состав можно выразить данными, приведенными в табл. 26.

Таблица 26. Состав воздуха

Масса воздуха при и нормальном атмосферном давлении равна 1,293 г. При температуре и давлении около воздух конденсируется в бесцветную прозрачную жидкость.

Несмотря на низкую при обычном давлении температуру кипения (около ), жидкий воздух можно довольно долго сохранять в сосудах Дьюара - стеклянных сосудах с двойными стенками, из пространства между которыми воздух откачан (рис. 109).

В жидком воздухе легко переходят в твердое состояние этиловый спирт, диэтиловый эфир и многие газы. Если, например, пропускать через жидкий воздух диоксид углерода, то он превращается в белые хлопья, похожие по внешнему виду на снег. Ртуть, погруженная в жидкий воздух, становится твердой и ковкой.

Многие вещества, охлажденные жидким воздухом, резко изменяют свои свойства. Так, цинк и олово становятся настолько хрупкими, что легко превращаются в порошок, свинцовый колокольчик издает чистый звенящий звук, а замороженный резиновый мячик разбивается вдребезги, если уронить его на пол.

Поскольку температура кипения кислорода лежит выше, чем температура кипения азота , то кислород легче превращается в жидкость, чем азот.

Рис. 109. Сосуды Дьюара (в разрезе).

Поэтому жидкий воздух богаче кислородом, чем атмосферный. При хранении жидкий воздух еще больше обогащается кислородом вследствие преимущественного испарения азота.

Жидкий воздух производят в больших количествах. Он используется главным образом для получения из него кислорода, азота и благородных газов; разделение производят путем ректификации - дробной перегонки.


Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах , от которых зависит жизнедеятельность всего живого.

Вконтакте

Состав воздуха

О2 выполняет функцию окислительных процессов в человеческом теле , которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода , при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95% . Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16% . Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход .

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3% . Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент , который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в .

Без восьмого элемента периодической таблицы нельзя добыть огонь . Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли , а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы , которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Диаграмма — соотношение воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Функции кислорода в атмосфере и для организма

Для человека огромное значение имеет так называемое парциальное давление , которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба . Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в .

Кислород нередко используется для лечения различных заболеваний . Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Важно! На состав воздуха влияют многие факторы, соответственно, может меняться процент кислорода. Негативная экологическая ситуация приводит к ухудшению качества воздуха. В мегаполисах и крупных городских поселениях пропорция углекислого газа (СО2) будет больше, чем в небольших поселениях или на лесных и заповедных территориях. Большое влияние оказывает и высота – процентное содержание кислорода будет меньше в горах. Можно рассмотреть следующий пример – на горе Эверест, которая достигает высоты 8,8 км, концентрация кислорода в воздухе будет ниже в 3 раза, чем в низине. Для безопасного пребывания на высокогорных вершинах требуется использовать кислородные маски.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в , поэтому уменьшился процент кислорода , необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36% .
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21% .

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма .

К чему приводит недостаток кислорода

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм . Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом . Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности . В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых .

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания . Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость , ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние , то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Заключение

Кислород – важнейшая составляющая воздуха , без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21% . Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

Можно вполне оценить планетное значение явлений жизни, в частности дыхания, обратив внимание на историю свободного кислорода в земной коре, одного из бесчисленных химических тел, вносимых живым веществом в биосферу.

Свободный кислород в молекулах О 2 , как мы знаем, в форме газа и еще больше в водных растворах играет совершенно исключительную роль во всех химических реакциях земной поверхности. Можно сказать, что он своим присутствием меняет весь их ход. Количество непрерывно существующих в земной коре молекул О 2 огромно. Можно определить его с достаточной точностью. В атмосфере - в тропосфере и в нижней стратосфере - вес свободного кислорода, молекул О 2 , по С. Аррениусу, соответствует минимально 1,2∙10 15 т, максимально 2,1∙10 15 т. Эта масса в сотни тысяч раз превышает общие массы в земной коре целого ряда многочисленных химических элементов земной коры. Атмосфера далеко не содержит всего свободного кислорода. Очень значительная часть его находится в растворе в водах и прежде всего в той массе соленой воды, которая образует Мировой океан. Все же эта часть меньше, чем вся масса свободного кислорода атмосферы и немногим превышает 1,5∙10 13 т.

Свободный кислород также растворен в пресной воде суши, растворен или окклюдирован в снегах и во льдах. Но это количество меньше растворенного кислорода гидросферы, так как весь объем пресной воды, по В. Гальбфассу, составляет лишь 3,6∙10 -1 % объема соленой воды океана, даже включая сюда льды и снега, представляющие по весу своему господствующую часть воды суши. Так, по Гальбфассу, объем льдов соответствует 3,5-4 10 6 км 3 , объем воды океана - 1,3 10 9 км 3 (О. Крюммель), объем воды озер, болот, рек и надземных вод - 7,5 10 5 км 3 максимально. Таким образом, все количество свободного кислорода, даже считая свободный кислород, включенный в осадочные породы, немного превышает 1,5∙10 15 т, приблизительно составляя одну десятитысячную часть всего кислорода земной коры.

Мы знаем, что свободный кислород существует лишь на поверхности Земли. Вода глубоких источников, как это доказал уже в конце XVIII в. врач Д. Пирсон (1751 - 1828) в Англии, его не содержит. Газы вулканических и метаморфических пород почти свободны от него.

Количество свободного кислорода в биосфере, несомненно, одна из наиболее точно определенных физических постоянных нашей планеты. Оно определяет геохимическую работу живых организмов и позволяет понять ее значение в истории химических элементов.

Свободный кислород - самый могущественный деятель из всех нам известных химических тел земной коры. Он изменяет - окисляет - огромное количество химических соединений, он всегда находится в движении, все время вступает в соединения. Мы знаем тысячи химических реакций, которыми он захватывается, во время которых он входит в соединения. Среди них наиболее важны окисленные соединения металлоидов, таких, как сера и углерод (в том числе и соединения организмов), и соединения металлов - железа или марганца. История всех циклических элементов земной коры определяется их отношением к свободному кислороду. Недавние исследования указывают даже на его первостепенное влияние в вулканических явлениях. Кислород атмосферы, захваченный горящей лавой, дает окисленные продукты (например, воды, окислы серы и пр.), и тепло, освобожденное этими реакциями окисления, играет огромную роль в термических эффектах лав. Высокая температура лав достигается на поверхности под влиянием этих реакций окисления; лава, поднимающаяся из недр коры и еще не соприкасающаяся с кислородом воздуха, имеет температуру, часто на сотни градусов более низкую.

Несмотря на все значение, представляемое этими реакциями окисления для множества таких земных процессов, количество свободного кислорода планеты представляется неизменным или почти неизменным. Очевидно, должны существовать обратные процессы, должно идти освобождение свободного кислорода в окружающую среду взамен кислорода, постоянно удерживаемого в новых прочных соединениях. Мы знаем в биосфере одну-единственную реакцию такого рода, если будем принимать во внимание только реакции большого масштаба. Это реакция биохимическая, выделение свободного кислорода хлорофильными пластидами земных организмов. Эта реакция открыта в конце XVIII в. Д. Пристлеем, углублена трудами выдающихся ученых, его современников, освещена во всем ее значении, в ее всеобщности, в ее главных чертах женевским ученым Т. де Соссюром в начале прошлого века.

Несомненно, эта реакция образования свободного кислорода в земной коре не единственная, но, поскольку можно судить, она единственная, которая дает значительные массы свободного кислорода в составе атмосферы, облекающей нашу планету.

Выделение свободного кислорода вне влияния жизни доказано или же является в высшей степени вероятным в связи с процессами радиоактивного распада, разложения газов ультрафиолетовыми излучениями и процессами метаморфизма. Все эти процессы идут в значительной мере вне биосферы, может быть за исключением радиоактивного распада, и в ее явлениях - в создании тропосферы - едва ли участвуют.

В глубинах земной коры кислород должен выделяться, так как соединения, богатые кислородом, например сульфаты или тела, содержащие окись железа, образуемые на поверхности, превращаются в глубоких слоях коры в соединения, более бедные кислородом или его не содержащие.

Однако этот свободный кислород должен немедленно вступать в соединения; нигде мы не находим его проявления.

Если даже кислород подымается временами и местами из глубин земной коры, совершенно ясно, что эти возможные его выделения, указания на которые встречаются, ничтожны по массе - в биосфере - по сравнению с тем количеством кислорода, которое в ней выделяется биогенным путем.

Гораздо важнее могло бы быть выделение свободного кислорода в стратосфере и выше под влиянием ультрафиолетовых излучений в связи с разложением паров воды, может быть углекислоты. Эта область явлений еще менее изучена и учтена по сравнению даже с выделением кислорода в метаморфической оболочке. Однако два обстоятельства должны быть приняты во внимание, сильно уменьшающие геологическое значение этого явления: 1) малая масса разреженных газов в стратосфере и выше и 2) чрезвычайно заторможенный их обмен с тропосферой.

Наконец, третий фактор может быть учитываем: распад молекул воды под влиянием а -, отчасти β-излучений всюду находящихся атомов радиоактивных элементов. Существование этих явлений несомненно, но нигде концентрации таких атомов в природных водах не представляются столь большими, чтобы с ними пришлось считаться в пределах биосферы. К сожалению, это явление и экспериментально и наблюдением в природе изучено недостаточно.

Учитывая все это, можно сейчас утверждать, что свободный кислород тропосферы и поверхностной водной атмосферы (газов, растворенных в поверхностных природных водах), т. е. больше чем пятая часть массы тропосферы, есть создание жизни.

Но больше того, совершенно аналогичное явление наблюдается для свободного азота тропосферы, и будет правильным заключить - и это в дальнейшем учитывать, - что земная газовая оболочка, наш воздух, есть создание жизни.

В истории свободного кислорода мы получаем, таким образом, яркое мерило геологического и геохимического значения жизни.

— Источник—

Вернадский, В.И. Биосфера/ В.И. Вернадский. – М.: Мысль, 1967.– 374 с.

На Земле находится 49,4% кислорода, который встречается либо в свободном виде в воздухе, либо в связанном (вода, соединения и минералы).

Характеристика кислорода

На нашей планете газ кислород распространен больше всех других химических элементов. И это неудивительно, ведь он входит в состав:

  • горных пород,
  • воды,
  • атмосферы,
  • живых организмов,
  • белков, углеводов и жиров.

Кислород активный газ и поддерживает горение.

Физические свойства

В атмосфере кислород содержится в бесцветном газообразном виде. Он не имеет запаха, малорастворим в воде и других растворителях. У кислорода прочные молекулярные связи, из-за которых он химически малоактивен.

Если кислород нагревать, он начинает окислять и реагировать с большинством неметаллов и металлов. Например, железо, этот газ медленно окисляет и вызывает его ржавление.

При снижении температуры (-182,9°С), и нормальном давлении газообразный кислород переходит в другое состояние (жидкое) и приобретает бледно-синий цвет. Если температуру еще снижать (до -218,7°С) газ затвердеет и изменится до состояния синих кристаллов.

В жидком и твердом состояниях кислород приобретает синий цвет и обладает магнитными свойствами.

Древесный уголь является активным поглотителем кислорода.

Химические свойства

Почти во время всех реакций кислорода с другими веществами образуется и выделяется энергия, сила которой может зависеть от температуры. Например, при обычных температурах этот газ медленно реагирует с водородом, а при температуре выше 550°С возникает реакция со взрывом.

Кислород - активный газ, который входит в реакцию с большинством металлов, кроме платиновых и золота. Сила и динамика взаимодействия, во время которого образуются оксиды, зависит от присутствия в металле примесей, состояния его поверхности и измельчения. Некоторые металлы, во время связи с кислородом, кроме основных оксидов образуют амфотерные и кислотные оксиды. Оксиды золота и платиновых металлов возникают во время их разложения.

Кислород кроме металлов, так же активно взаимодействует практически со всеми химическими элементами (кроме галогенов).

В молекулярном состоянии кислород более активен и эту особенность используют при отбеливании различных материалов.

Роль и значение кислорода в природе

Зеленые растения вырабатывают больше всего кислорода на Земле, причем основная масса производится водными растениями. Если кислорода в воде выработалась больше, то избыток уйдет в воздух. А если меньше, то наоборот, недостающее количество будет дополнено из воздуха.

Морская и пресная вода содержит 88,8 % кислорода (по массе), а в атмосфере его 20,95 % по объёму. В земной коре больше 1500 соединений имеют в составе кислород.

Из всех газов, входящих в состав атмосферы, больше всего важен для природы и человека кислород. Он есть в каждой живой клетке и необходим всем живым организмам для дыхания. Недостаток кислорода в воздухе сразу отражается на жизнедеятельности. Без кислорода невозможно дышать, а значит жить. Человек во время дыхания за 1 мин. в среднем его потребляет 0,5 дм3. Если в воздухе его станет меньше до 1/3 его части, то он потеряет сознание, до 1/4 части — он умрет.

Дрожжи и некоторые бактерии могут жить без кислорода, но теплокровные животные, умирают при его недостатке через несколько минут.

Круговорот кислорода в природе

Круговоротом кислорода в природе называется обмен им между атмосферой и океанами, между животными и растениями во время дыхания, а так же в процессе химического горения.

На нашей планете важный источник кислорода - растения, в которых проходит уникальный процесс фотосинтеза. Во время него происходит выделение кислорода.

В верхней части атмосферы тоже образуется кислород, вследствие разделения воды под действием Солнца.

Как происходит круговорот кислорода в природе?

Во время дыхания животных, людей и растений, а так же горения любого топлива тратится кислород и образуется углекислый газ. Потом углекислым газом питаются растения, которые в процессе фотосинтеза снова вырабатывают кислород.

Таким образом, его содержание в воздухе атмосферы поддерживается и не заканчивается.

Области применения кислорода

В медицине во время операций и опасных для жизни заболеваний больным дают дышать чистым кислородом, чтобы облегчить их состояние и ускорить выздоровление.

Без баллонов с кислородом альпинисты не поднимаются в горы, а аквалангисты не погружаются на глубину морей и океанов.

Кислород широко применяется в разных видах промышленности и производства:

Так же широко кислород применяется в космической индустрии и авиации.

Что еще почитать