План конспект урока введение в органическую химию. Конспект предмет органической химии. Химические свойства алкенов

IX класс

Тема: «ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ»

(Урок изучения нового материала)

Форма урока: рассказ учителя и демонстрация образцов и мо­делей органических веществ.

В связи с переходом на концентрические программы в IX классе изучаются основы органической химии, закладываются представления об органических веществах. Ниже приводится разработка двухчасового урока, который был проведен в IX классе после изучения темы «Углерод и его соединения».

Цели урока: сформировать представление о составе и строе­нии органических соединений, их отличительных признаках; выявить при­чины многообразия органических веществ; продолжить формирование умения составлять структурные формулы на примере органических ве­ществ; сформировать представление об изомерии и изомерах.

Предварительное домашнее задание: вспомнить, как образуется ковалентная связь в молекулах неорганических веществ, как графически можно показать ее образование.

Материалы и оборудование к уроку: образцы орга­нических веществ (уксусная кислота, ацетон, аскорбиновая кислота, са­хар- в фабричных упаковках с этикетками, бумага, свеча, спиртовка со спиртом, сухое горючее (уротропин), нефть; образцы изделий из пластмас­сы и синтетических волокон (линейки, ручки, банты, пуговицы, цветочные кашпо, полиэтиленовые пакеты и т. п.); спички, фарфоровая чашка, тигель­ные щипцы. Шаростержневые модели метана, этилена, ацетилена, пропана, бутана, изобутана, циклогексана. На каждый ученический стол - ванночка с шаростержневыми моделями.

Ход урока:

I. Учитель рассказывает, как произошел термин «органические ве­щества».

До начала XIX века вещества делили по происхождению на мине­ральные, животные и растительные. В 1807 году шведский химик Й. Я. Берцелиус ввел в науку термин «органические вещества», объединив в одну группу вещества растительного и животного происхождения. Науку об этих веществах он предложил называть органической химией. В начале XIX века считалось, что органические вещества в искусственных условиях получить нельзя, они образуются только в живых организмах или под их воздействием. Ошибочность этого представления была доказана синтезами органических веществ в лабораторных условиях: в 1828 году немецкий хи­мик Ф. Вёдер синтезирует мочевину, его соотечественник А. В. Кольбе в 1845 г. получает уксусную кислоту, в 1854 г. французский химик П. Э. Бертло - жиры, в 1861 г. русский химик А. М. Бутлеров - сахаристое вещество. (Эта информация предварительно записана на доске и закрыта, во время сообщения учитель открывает эту запись.)

Оказалось, что резкой границы между органическими и неорганиче­скими веществами не существует, они состоят из одних и тех же химиче­ских элементов и могут быть превращены друг в друга.

Вопрос: На каком же основании органические вещества выделя­ют в отдельную группу, каковы их отличительные признаки?

Учитель предлагает учащимся вместе попытаться это выяснить.

II. Учитель показывает образцы органических веществ, называет их и, если возможно, указывает молекулярную формулу (для некоторых ве­ществ формулы записаны заранее на доске и закрыты, во время демонст­ рации эти записи открываются): уксусная кислота С 2 Н 4 О 2 ацетон С 3 Н 6 О, этиловый спирт (в спиртовке) С 2 Н 6 О, сухое горючее уротропин C 6 H 12 N 4 , витамин С или аскорбиновая кислота С 6 Н 8 О 6 , сахар С 12 Н 22 О 11 , парафиновая свеча и нефть, в состав которых входят вещества с общей формулой С Х Н У, бумага, состоящая из целлюлозы (С 6 Н 10 О 5) п.

Вопросы: Что общего вы заметили в составе этих веществ? Ка­кое химическое свойство вы можете предположить для этих веществ?

Учащиеся отвечают, что во все перечисленные соединения входят углерод и водород. Предполагают, что они горят. Учитель демонстрирует горение уротропина, свечи и спиртовки, обращает внимание на характер пламени, вносит последовательно в пламя спиртовки, уротропина и свечи фарфоровую чашку, показывает, что от пламени свечи образуется копоть. Далее обсуждается вопрос о том, какие вещества образуются в ходе горе­ния органических веществ. Учащиеся приходят к выводу, что образоваться может углекислый или угарный газ, чистый углерод (сажа, копоть). Учи­тель сообщает, что не все органические вещества способны гореть, но все они разлагаются при нагревании без доступа кислорода, обугливаются. Учитель демонстрирует обугливание сахара при нагревании. Учитель про­сит определить вид химической связи в органических веществах, исходя из их состава.

Далее ученики в тетрадях записывают признаки органических ве­ ществ: 1. Содержат углерод. 2. Горят и (или) разлагаются с образованием углеродсодержащих продуктов. 3. Связи в молекулах органических ве­ществ ковалентные.

III. Учитель предлагает учащимся сформулировать определение по­
нятия «органическая химия». Определение записывается в тетради. Орга­
ническая химия - наука об органических веществах, их составе, строении,
свойствах и способах получения.

Синтезы органических веществ в лабораторных условиях ускорили развитие органической химии, ученые стали экспериментировать и полу­чать вещества, которые не встречаются в природе, но соответствуют всем признакам органических веществ. Это пластмассы, синтетические каучуки и волокна, лаки, краски, растворители, лекарства. (Учитель демонстриру­ет изделия из пластмасс и волокон.) По происхождению эти вещества не являются органическими. Таким образом, группа органических веществ существенно расширилась, а старое название сохранилось. В современном понимании органические вещества - не те, которые получаются в живых организмах или под их действием, а те, которые соответствуют признакам органических веществ.

IV. Изучение органических веществ в XIX веке столкнулось с рядом
затруднений. Одно из них - «непонятная» валентность углерода. Так, на­
пример, в метане СН 4 валентность углерода IV. В этилене С 2 Н 4 , ацетилене
С 2 Н 2 , пропане С 3 Н 8 учитель предлагает определить валентность самим
учащимся. Учащиеся находят валентности соответственно II, I и 8/3. Полу­
ченные валентности маловероятны. Значит, к органическим веществам
нельзя применять методы неорганической химии. В самом деле, в строении
органических веществ есть особенности: валентность углерода всегда IV,
атомы углерода соединяются между собой в углеродные цепочки. Учитель
предлагает построить структурные формулы данных веществ. Учащиеся в
тетрадях строят структурные формулы и выносят на доску:

Для сравнения учитель демонстрирует шаростержневые модели этих веществ.

После этого учитель просит графически изобразить образование ко-
валентных связей в молекулах метана, этилена и ацетилена. Изображения
выносятся на доску и обсуждаются. ,

V. Учитель обращает внимание учащихся на периодическую систему.
Сейчас открыто более 110 химических элементов, все они входят в

состав неорганических веществ. Известно около 600 тысяч неорганических соединений. В состав природных органических веществ входят немногие элементы: углерод, водород, кислород, азот, сера, фосфор, некоторые ме­таллы. В последнее время синтезируют элементорганические вещества, расширяя этим спектр элементов, входящих в состав органических ве­ществ.

Вопрос: Как вы думаете, сколько органических соединений сей­час известно? (Учащиеся называют предполагаемое количество известных органических веществ. Обычно эти числа занижены по сравнению с фак­ тической численностью органических веществ.) В 1999 году зарегистриро­вано 18-миллионное органическое вещество.

В о п р о с: В чем же причины многообразия органических веществ? Учащимся предлагается попытаться найти их в том, что уже известно о строении органических веществ. Ученики называют такие причины, как: соединение углерода в цепи разной длины; соединение атомов углерода простыми, двойными и тройными связями с другими атомами и между со­бой; множество элементов, входящих в состав органических веществ. Учи­тель приводит еще одну причину - разный характер углеродных цепей: линейные, разветвленные и циклические, демонстрирует модели бутана, изобутана и циклогексана.

Учащиеся в тетради записывают: Причины многообразия органиче­ ских соединений.

1. Соединение атомов углерода в цепи разной длины.

    Образование атомами углерода простых, двойных и тройных свя­
    зей с другими атомами и между собой.

    Разный характер углеродных цепочек: линейные, разветвленные,
    циклические.

    Множество элементов, входящих в состав органических веществ.

Есть еще одна причина. (Надо оставить для ее записи место в тет­ ради.) Ученики должны найти ее сами. Для этого можно выполнить лабо­раторную работу.

VI. Лабораторная работа.

Учащимся выдают шарики и стержни: 4 черных шарика с 4 отвер­стиями каждый - это атомы углерода; 8 белых шариков с одним отверстием каждый - атомы водорода; 4 длинных стержня для соединения атомов углерода между собой; 8 коротких стержней - для соединения атомов угле­рода с атомами водорода.

Задание: используя весь «строительный материал», постройте модель молекулы органического вещества. Изобразите структурную фор­мулу этого вещества в тетради. Постарайтесь сделать как можно больше разных моделей из одного и того же «строительного материала».

Работа проходит в парах. Учитель проверяет правильность сборки моделей и изображения структурных формул, помогает учащимся, у кото­рых возникли затруднения. На работу отводится 10-15 минут (в зависимо­сти от успешности работы класса), после этого структурные формулы выносятся на доску и обсуждаются следующие вопросы: Что у всех этих веществ одинаково? Чем отличаются приведенные вещества?

Выясняется, что одинаковым является состав, разным - строение. Учитель объясняет, что такие вещества, состав которых одинаков, а строе­ние и поэтому свойства - разные, называются изомерами. Под строением вещества подразумевается порядок соединения атомов, их взаимное распо­ложение в молекулах. Явление существования изомеров называется изоме­ рией.

VII. Определения понятий «химическое строение», «изомеры» и «изомерия» записываются учащимися в тетрадь после структурных формул изомеров. А в причины многообразия химических веществ вносится пятый пункт - явление изомерии органических соединений.

Умение строить структурные формулы изомеров отрабатывается на следующих примерах: С 2 Н 6 О (этанол и диметиловый эфир), С 4 Н 10 (бутан и изобутан). На этих примерах учитель показывает, как можно записать сокращенную структурную формулу:

Учитель предлагает построить изомеры состава C 5 H 12) если известно, что их существует три. После вынесения всех изомеров на доску, учитель обращает внимание учащихся на методику построения изомеров: уменьше­ние с каждым разом главной цепи и увеличение числа радикалов.

Домашнее задание : выучить записи в тетради, построить изомеры состава С 6 Н М (их 5).

Урок на тему: Вводный инструктаж по Т/Б.Предмет органической химии. Формирование органической химии как науки.

Цели урока :

1.Сформировать представление о составе и строении органических соединений, их отличительных признаках.
2. Выявить причины многообразия органических веществ.
3. Продолжить формирование умения составлять структурные формулы на примере органических веществ.
4. Сформировать представление об изомерии и изомерах.

Оборудование урока : образцы органических соединений, спички, фарфоровая чашка, щипцы, шаростержневые модели представителей алканов, алкенов, циклоалканов.

Ход урока.

Что же такое “органическая химия” и как произошел термин “органические вещества”?

Органическая химия – наука об органических соединениях и их превращениях. Первоначально органическим считались вещества, найденные в живых организмах и животных. Такие, встречающиеся в живой природе вещества, обязательно содержат углерод. Долгое время считалось, что для получения сложных соединений углерода используется некая “движущая сила”, действующая только в живой материи. В лабораториях удавалось синтезировать лишь самые простые углеродосодержащие соединения, такие, как диоксид углерода CO 2 , карбид кальция CaC 2 , цианид калия KCN. Началом синтеза органических веществ по праву считается синтез мочевины из неорганической соли – цианата аммония NH 4 CNO, произведенный Вёлером в 1828 году. Это и повлекло за собой необходимость определения органических веществ. Сегодня к ним относятся более миллиона углеродосодержащих соединений. Некоторые из них выделены из растительных и животных источников, однако гораздо большее их число синтезировано в лабораториях химиками-органиками.

На каком основании органические вещества выделяют в отдельную группу? Каковы их отличительные признаки?

Так как углерод непременно присутствует во всех органических веществах, органическую химию с середины XIX века часто называют химией соединений углерода .

Термин “органическая химия” был введен шведским ученым Й. Берцелиусом в начале XIX века. До этого вещества классифицировали по источнику их получения. Поэтому в XVIII веке различали три химии: “растительную”, “животную” и “минеральную”. Еще в XVI веке ученые не делали различий между органическими и неорганическими соединениями. Вот, например, классификация веществ на основании знаний того времени:

    Масла: купоросное (серная кислота), оливковое;

    Спирты: винный, нашатырный, соляный (соляная кислота), селитряной (азотная кислота);

    Соли: поваренная, сахар и т.д.

Несмотря на то, что эта классификация, мягко говоря, не соответствует нынешней, многие современные названия пришли к нам из того времени. Например, название “спирт” (от латинского “спиритус” – дух) присваивалось всем легколетучим жидкостям. Уже в XIX века химики не только вели интенсивный поиск новых веществ и способов их получения, но и уделяли особое внимание определению состава веществ. Список важнейших открытий органической химии того времени можно было бы представить следующим образом:

1845 год. Кольбе синтезирует в несколько стадий уксусную кислоту, используя в качестве исходных неорганические вещества: древесный уголь, водород, кислород, серу и хлор.
1854 год. Бертло синтезирует жироподобное вещество.
1861 год. Бутлеров, действуя известковой водой на параформальдегид (полимер муравьиного альдегида), осуществил синтез “метиленитана” - вещества, относящегося к классу сахаров.
1862 год. Бертло, пропуская водород между угольными электродами, получает ацетилен.

Эти эксперименты подтверждали, что органические вещества имеют ту же природу, что и все простые вещества, и никакой жизненной силы для их образования не требуется.

Органические и неорганические вещества состоят из одних и тех же химических элементов и могут быть превращены друг в друга.

Учитель приводит примеры органических веществ, называет их молекулярную формулу (формулы записаны заранее на доске и закрыты): уксусная кислота CH 3 -COOH, этиловый спирт CH 3 CH 2 OH, сахароза C 12 H 22 O 11 , глюкоза C 6 H 12 O 6 , ацетилен HC = CH, ацетон

Вопрос: Что общего вы заметили в составе этих веществ? Какое химическое свойство вы можете предположить для этих веществ?

Учащиеся отвечают, что во все перечисленные соединения входят углерод и водород. Предполагают, что они горят. Учитель демонстрирует горение спиртовки (C 2 H 5 OH), обращает внимание на характер пламени, вносит последовательно в пламя спиртовки, уротропина и свечи фарфоровую чашку, показывает, что от пламени свечи образуется копоть. Далее обсуждается вопрос о том, какие вещества образуются в ходе горения органических веществ. Учащиеся приходят к выводу, что образоваться может углекислый или угарный газ, чистый углерод (сажа, копоть). Учитель сообщает, что не все органические вещества способны гореть, но все они разлагаются при нагревании без доступа кислорода, обугливаются. Учитель демонстрирует обугливание сахара при нагревании. Учитель просит определить вид химической связи в органических веществах, исходя из их состава.

Вопрос: Как вы думаете, сколько органических соединений сейчас известно? (Учащиеся называют предполагаемое количество известных органических веществ. Обычно эти числа занижены по сравнению с фактической численностью органических веществ). В 1999 году зарегистрировано 18-миллионное органическое вещество.

Вопрос: В чем же причины многообразия органических веществ? Учащимся предлагается попытаться найти их в том, что уже известно о строении органических веществ. Ученики называют такие причины, как: соединение углерода в цепи разной длины; соединение атомов углерода простыми, двойными и тройными связями с другими атомами и между собой; множество элементов, входящих в состав органических веществ. Учитель приводит еще одну причину – разный характер углеродных цепей: линейные, разветвленные и циклические, демонстрирует модели бутана, изобутана и циклогексана.

Учащиеся в тетради записывают: Причины многообразия органических соединений.

1. Соединиение атомов углерода в цепи разной длины.
2. Образование атомами углерода простых, двойных и тройных связей с другими атомами и между собой.
3. Разный характер углеродных цепочек: линейные, разветвленные, циклические.
4. Множество элементов, входящих в состав органических веществ.
5. Явление изомерии органических соединений.

Вопрос: Что же такое изомерия?

Это было известно с 1823 года. Берцелиус (1830 год) предложил назвать изомерами вещества, имеющие качественный и количественный состав, но обладающие различными свойствами. К примеру, было известно около 80 разнообразных веществ, отвечающих составу C 6 H 12 O 2 . В 1861 году загадка изомерии была разгадана.

На съезде немецких естествоиспытателей и врачей был прочитан доклад, называвшийся “Нечто в химическом строении тел”. Автором доклада был профессор Казанского университета Александр Михайлович Бутлеров.

Именно это самое “нечто” и составило теорию химического строения, которая легла в основу наших современных представлений о химических соединениях.

Теперь органическая химия получила прочную научную основу, обеспечившую ее стремительное развитие в последующее столетие вплоть до наших дней. Предпосылками для ее создания послужили успехи в разработке атомно-молекулярного учения, представлений о валентности и химической связи в 50-е годы XIX века. Эта теория позволила предсказывать существование новых соединений и их свойства.

Понятие о химическом строении или, в конечном итоге, о порядке связи атомов в молекуле позволило объяснить такое загадочное явление, как изомерия.

Определения понятий “химическое строение”, “изомеры” и “изомерия” записываются в тетрадь.

Умение строить структурные формулы изомеров отрабатываются на примерах:

C 2 H 6 O (этанол и диметиловый эфир), C 4 H 10 (бутан и изобутан). Учитель показывает, как можно записать краткую структурную формулу

На доске – плакат с изображением изомеров бутана и пентана.

Учитель предлагает построить изомеры состава C 6 H 14 , если известно, что их существует пять. После вынесения всех изомеров на доску, учитель обращает внимание учащихся на методику построения изомеров: уменьшение с каждым разом главной цепи и увеличение числа радикалов.

Домашнее задание: выучить записи в тетради, построить все возможные изомеры состава C 7 H 16 .


«10 урок»

Тема: «ЦИКЛОПАРАФИНЫ: СТРОЕНИЕ, СВОЙСТВА, ПРИМЕНЕНИЕ» . Нахождение молекулярной формулы газообразного углеводорода по его относительной плотности и массовым долям элементов

Цели урока: 1. Дать учащимся понятие о циклических углеводородах. 2. Знать физические и химические свойства циклопарафинов в сравнении с предельными углеводородами, уметь записывать уравнения реакций, доказывающие химические свойства циклопарафинов. 3. Знать практическое применение циклопарафинов, исходя из свойств данных веществ, способы получения.

Ход урока

I . Подготовка к восприятию нового материала

1 . Проверка домашнего задания.

У доски 1-й учащийся - задача № 1, стр. 50. 2-й учащийся - задача 7, стр. 23.

2. Работа классу.
Решить задачу:

При сжигании 2,1 г вещества образуется 6,6 г оксида углерода (IV ) и 2,7 г воды. Плотность паров этого вещества по воздуху равна 2,91. Определите молекулярную формулу данного вещества.

3. Фронтальная беседа по вопросам:

а) Какие вещества называют гомологами? изомерами?

б) Почему углеводороды называют предельными?

в) Почему углеводородная цепь (у предельных углеводородов) имеет зигзагообразное строение? Почему эта цепь может принимать в пространстве разные формы?

г) Почему атомы углерода соединяются в цепи?

д) В чем причина многообразия органических соединений? И другие вопросы.

II . Изучение нового материала (лекция)

1 . Понятие о циклопарафинах .

Кроме рассмотренных предельных углеводородов с открытой цепью атомов - парафинов, существуют углеводороды замкнутого, циклического строения. Их называют циклопарафинами, например:

Общая формула циклопарафинов: С п Н 2п.

Они имеют на два атома водорода меньше, чем у предельных. Почему?

Циклопарафины называют также циклоалканами. Пяти- и шестичленные циклопарафины были впервые открыты в нефти профессором Московского университета В. В. Марковниковым. Отсюда их другое название - нафтены.

Молекулы циклопарафинов часто содержат боковые углеродные цепи:

2. Строение циклопарафинов .

По строению молекул циклопарафины сходны с предельными углеводородами. Каждый атом углерода в циклоалканах находится в состоянии sp 3 -гибридизации и образует четыре δ-связи С - С и С - Н. Углы между связями зависят от размера цикла. В простейших циклах С 3 и С 4 углы между связями С - С сильно отличаются от тетраэдрического угла 109°28 что создает в молекулах напряжение и обеспечивает их высокую реакционную способность.

Свободное вращение вокруг связей С-С, образующих цикл, невозможно.

3. Изомерия и номенклатура .

Для циклоалканов характерны два вида изомерии.

а) 1-й вид - структурная изомерия - изомерия углеродного скелета (как для всех классов органических соединений). Но структурная изомерия может быть обусловлена разными причинами.

Во-первых, размером цикла. Например, для циклоалкана С 4 Н 8 существует два вещества:

Также к структурной изомерии относится межклассовая. Например, для вещества С 4 Н 8 можно записать структурные формулы веществ, относящихся к разным классам углеводородов.

б) 2-й вид - пространственная изомерия у некоторых замещенных циклоалканов обусловлена отсутствием свободного вращения вокруг связей С - С в цикле.

Например, в молекуле 1,2-диметилциклопропанадве группы СН 3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер).

Названия циклоалканов образуются путем добавления приставки цикло- к названию алкана с соответствующим числом атомов углерода. Нумерацию в цикле производят таким образом, чтобы заместители получили наименьшие номера.

Структурные формулы циклоалканов обычно записывают в сокращенном виде, используя геометрическую форму цикла и опуская символы атомов углеро­ да и водорода.

4. Физические свойства циклопарафинов .

При обычных условиях первые два члена ряда (С 3 и С 4) - газы, C 5 – С 10 - жидкости, высшие - твердые вещества. Температуры кипения и плавления циклоалканов, как и их плотности, несколько выше, чем у парафинов с равным числом атомов углерода. Как и парафины, циклоалканы практически нерастворимы в воде.

5. Химические свойства.

По химическим свойствам циклоалканы, в частности циклопентан и циклогексан, сходны с предельными углеводородами. Они химически малоактивны, горючи, вступают в реакцию замещения с галогенами.

в) Также они вступают в реакцию дегидрирования (отщепления водорода) в присутствии никелевого катализатора.

По химическому характеру малые циклы (циклопропан и циклобутан) склонны к реакциям присоединения, в результате которых происходит разрыв цикла и образуются парафины и их производные, чем они напоминают ненасыщенные соединения.

а) Присоединение брома

6. Получение циклопарафинов .

а) Циклопентан, циклогексан и их производные составляют основную часть некоторых сортов нефти. Поэтому их получают в основном из нефти. Но существуют и синтетические методы получения.

б) Общим способом получения циклоалканов является действие металлов на дигалогенопроизводные алканов.

7. Применение циклоалканов. Из циклопарафинов практическое значение имеют циклопентан, циклогексан, метил циклогексан, их производные и другие. В процессе ароматизации нефти эти соединения превращаются в ароматические углеводороды - в бензол, толуол и другие вещества, которые широко используются для синтеза красителей, медикаментов и т.д. Циклопропан применяют для наркоза. Циклопентан используется как добавка к моторному топливу для повышения качества последнего и в разных синтезах.

В нефти содержатся также карбоксильные производные циклопентана -циклопенткарбоновая кислота и ее гомологи, называемые нафтеновыми кислота­ми. При очистке нефтяных продуктов щелочью образуются натриевые соли этих кислот, обладающие моющей способностью (мылонафт). Циклогексан используют главным образом для синтеза адипиновой кислоты и капролактама - полупродуктов для производства синтетических волокон найлон и капрон.

III . Закрепление знаний и умений.

Задача 2. При сгорании вещества массой 4,2 г образуется 13,2 г оксида уг­лерода (IV ) и 5,4 г воды. Плотность паров этого вещества по воздуху равна 2,9. Оп­ределите молекулярную формулу данного вещества.

Задача 3. При сгорании 7,5 г вещества образуется 11 г оксида углерода (IV ) и 4,5 г воды. Плотность паров этого вещества по водороду равна 14 Определите молекулярную формулу данного вещества.

Зад на дом §

Просмотр содержимого документа
«10.1»

Урок №11 10 класс Практическая работа: «Качественное определение углерода, водорода и хлора в органических соединениях».

Цели . Научиться экспериментально доказывать качественный состав углеводородов и их галогенопроизводных, обосновывать данные эксперимента.
Оборудование и реактивы . Шпатели (2 шт.), кусочек ваты, U- и Г-образные газоотводные трубки, газоотводная трубка-капилляр, спиртовка, спички, штатив железный с лотком, широкогорлая пробирка, пипетка, промывочная склянка, штатив с пробирками, щипцы тигельные, фильтровальная бумага, фарфоровая чашка, синее стекло (Со), санитарная склянка, стакан на 50 мл; лакмусовая бумага (фиолет.), С 2 Н 5 ОН (3–4 мл), известковая вода Са(ОН) 2 или баритовая вода Ba(OH) 2 , парафин (измельченный), сахароза С 12 Н 22 О 11 , CuO (порошок), CuSO 4 (безвод.), HNO 3 (конц.), хлороформ СНСl 3 или четыреххлористый углерод CCl 4 , Na металлический (2–3 горошины, свежеочищенный), AgNO 3 (р-р, = 1%), Cu (тонкая проволока, на конце скрученная в спираль).

Определение галогенов производят по Бейльштейну и по Степанову. Проба Бейльштейна . При нагревании с СuO галогенсодержащие вещества сгорают с образованием летучих соединений меди с галогеном, окрашивающих пламя в сине-зеленый цвет.
Реакция Степанова . Наличие галогена определяют путем восстановления соединения галогена водородом (атомарным, в момент выделения). Галоген отщепляется в виде галогеноводорода, обнаруживаемого реакцией с нитратом серебра(I) по белому творожистому осадку AgCl, нерастворимому в кислотах. Водород получают действием металлического Na на спирт.

Порядок работы

Задания

Наблюдения и выводы

1. В пробирке смешать (1:3) немного сахара С 12 Н 22 О 11 с оксидом меди(II), засыпав оксидом смесь и сверху.
2. В верхнюю часть пробирки (под пробку) поместить комок ваты, на которую насыпать немного безводной сернокислой меди(II).

Доказать опытным путем, что в составе выданного органического вещества имеются углерод и водород. Назвать признаки наблюдаемых химических реакций.

3. Пробирку закрыть пробкой с газоотводной трубкой, конец которой должен быть в сборнике над уровнем известковой воды. Нагревать сначала всю пробирку, затем смесь. Наблюдать

Написать уравнения протекающих реакций. Дополнительно написать уравнения реакций сжигания с CuO веществ
а) CCl 4 ;
б) глюкозы С 6 Н 12 О 6 ;
в) глицерина С 3 Н 8 О 3

Медную проволоку, взятую щипцами, прокалить в пламени горелки для образования на ее поверхности слоя оксида меди(II). Если пламя окрашивается в сине-зеленый цвет, то нагрев вести до исчезновения этой окраски. После охлаждения смочить кончик проволоки в испытываемом веществе CCl 4 и ввести в несветящееся пламя

Доказать опытным путем наличие в составе четыреххлористого углерода атомов галогена. Доказательство провести двумя способами. Объяснить результаты эксперимента, записать уравнения реакций распознавания

Демонстрационный опыт . В 2–3 мл С 2 Н 5 ОН (обезвоженного безводным CuSO 4) растворить несколько капель (крупинок) испытываемого вещества и добавить кусочек металлического Na (горошину). По окончании выделения водорода, убедившись в полном растворении натрия, смесь разбавить равным объемом воды, подкислить концентрированным раствором HNO 3 и прилить 1%-й раствор нитрата серебра(I)

Просмотр содержимого документа
«10kachreakzii»

Качественные реакции в органической химии» (10 класс)

Цель урока: обобщить знания учащихся по распознаванию органических веществ с помощью качественных реакций, уметь решать экспериментальные задачи.

Оборудование: учебное электронное издание «Органическая химия», (лаборатория систем мультимедиа), карточки с индивидуальными заданиями по распознаванию органических веществ.

Тип урока: обобщение и проверка знаний учащихся по данной теме.

Форма проведения урока: урок проводится два академических часа по 45 минут: на первом уроке просматривается диск и записываются уравнения реакций, с помощью которых можно распознать органические вещества, на втором уроке решаются экспериментальные задачи, в течении последних 15 минут урока учащиеся выполняют

индивидуальные задания.

Ход урока:

Учитель: Сегодня на уроке мы вспомним все качественные реакции, которые изучали в этом учебном году, научимся решать экспериментальные задачи. Поможет нам вспомнить и закрепить знания учебное электронное пособие «Органическая химия». Вы должны будете посмотреть и записать уравнения реакций, чтобы затем решать задачи.

I . Просмотр диска и запись уравнений реакций. (Первый урок)

1. Непредельные углеводороды.

1. Обесцвечивание бромной воды при пропускании через неё этилена. (Тема «Алкены», раздел «Химические свойства», слайд 4.)

2.Обесцвечивание перманганата калия в водной и кислой среде при пропускании через неё алкена. (Тема «Алкены», раздел «Химические свойства», слайды 11, 12, 13.)

3.Окисление алкинов и получение ацетилена. (Тема «Алкины», раздел «Окисление алкинов», слайды 1 и 8.)

2. Кислородосодержащие органические вещества.

1.Взаимодействие одноатомных предельных спиртов с натрием и окисление спиртов. (Уравнения записывают ученики самостоятельно.)

2. Внутримолекулярная дегидратация одноатомных спиртов - получение алкенов. (Тема «Спирты», раздел «Химические свойства спиртов», слайд 17.)

3. Многоатомные спирты. (Тема «Полиолы», слайды 2 и 4.)

4. Качественные реакции на фенол - взаимодействие с бромной водой и хлоридом железа (III ). (Тема «Фенол», слайды 2 и 4 .)

5. Окисление альдегидов. Реакции «серебряного и медного зеркала». (Тема «Альдегиды», раздел «Химические свойства альдегидов», слайды 12, 13, 14, 15.)

6. Распознавания предельных одноосновных карбоновых кислот. Реакции на индикаторы, взаимодействие с карбонатами и хлоридом железа (III ). (Тема «Карбоновые кислоты», раздел «Химические свойства», слайды 2, 3, 4.)

7. Качественные реакции на муравьиную кислоту. Обесцвечивание перманганата калия в кислой среде и реакция «серебряного зеркала». (Раздел «Муравьиная кислота», слайд 2.)

8. Распознавание высших непредельных карбоновых кислот и раствора мыла (стеарата натрия) - обесцвечивание бромной воды олеиновой кислотой и выпадение в осадок стеариновой кислоты при действии на мыло минеральной кислоты. (Уравнения ученики записывают самостоятельно.)

9. Распознавание глюкозы. Реакции с гидроксидом меди (II ), реакции «серебряного и медного зеркала». (Уравнения записываются самостоятельно.)

10. Действие раствора йода на крахмал. (Тема «Углеводы», раздел «Крахмал», слайд 6.)

3. Азотосодержащие органические соединения.

1. Распознавание первичных и вторичных аминов. (Тема «Амины», раздел «Химические свойства», слайд 7.)

2. Обесцвечивание бромной воды анилином. (Тема «Амины», раздел «Получение и свойства аминов», слайд 9.)

3. Качественные реакции на аминокислоты. (Тема «Аминокислоты», раздел «Физические и химические свойства», слайд 6.)

4. Цветные реакции белков. (Тема «Белки», раздел «Свойства белков», слайды 21 и 22 .)

II . Решение экспериментальных задач. (30 минут второго урока)

Для решения задач используется материал учебника О. С. Габриеляна «Органическая химия» 10 класс, с.293-294. (Практическая работа № 8.) Для решения задач мало знать качественные реакции, необходимо определить ход распознавания.

III . Проверочная работа учащихся. (15 минут второго урока)

Работа поводиться по карточкам, содержащих 4 варианта заданий. Необходимо написать ход определения веществ и уравнения качественных реакций.

1 вариант. Распознать растворы крахмала, формальдегида, мыла и глюкозы.

2 вариант . Распознать растворы глицерина, гексена, уксусной кислоты и белка.

3 вариант . Распознать растворы ацетальдегида, этанола, фенола и этиленгликоля.

4 вариант. Распознать растворы муравьиной кислоты, уксусной кислоты, крахмала и анилина.

Учитель: Качественный анализ веществ - важная тема при изучении органической химии. Знание её помогает в работе не только химикам, но и медикам, экологам, биологам, эпидемиологам, фармацевтам, работникам пищевой промышленности. Надеюсь, что эти знания помогут вам и в повседневной жизни.

Просмотр содержимого документа
«11-12 урок»

Урок 11-12 10 класс

Тема . «Алкены: строение, изомерия и номенклатура ».

Цель

Задачи : образовательные развивающие: воспитательные

Методы : словесные (объяснение, рассказ, беседа);

наглядные (демонстрация таблиц, шоростержневых моделей молекул).

Тип урока : изучение нового материала.

Оборудование

Ход урока.

    Организационный момент.

Вступительное слово учителя

Урок начинается поэтическими строками.

Нам каждый день природа дарит

Прикосновенье к алтарю.

Тебя, Земля, благодарю.

Круговращение планеты,

Прикосновение стихий,

Все – север, юг, зима и лето,

Дорога, труд, любовь, стихи,

Сплетение души и мысли,

Провалы, взлеты вверх и вниз…

И вот сегодня, как и на других уроках мы будем познавать новое. А познаем мы для того, чтобы уметь применять свои знания в жизни.

По теории Бутлерова, свойства веществ зависят от их строения.

    Сообщение задач урока.

1 .

2 . .

Уровень А (задание на «4»)

А. Алканов. Б. Алкенов.

    Гомологами являются:

А. Этана. Б. Этена.

    Определите тип реакции:

Уровень Б (задания на «5»)

    Гомологами пентана являются:

А. С 3 Н 8 . Б. С 2 Н 4 . В. С 6 Н 6. Г. С 7 Н 12.

    Промышленным процессом переработки каменного угля является:

А. Ректификация. В. Коксование.

Б. Электролиз. Г. Крекинг.

    2,3-диметилбутан имеет молекулярную формулу:

А. С 4 Н 10 . Б. С 5 Н 12 . В. С 6 Н 14. Г. С 7 Н 16

    Все атомы углерода находятся в sp 3 - гибридном состоянии в:

А. Аренах. Б. Алканах. В. Алкенах. Г. Алкинах.

    Допишите уравнение реакции и определите ее тип:

Al 4 C 3 + Н 2 О → …

А. Гидратация. В. Гидрирование.

Б. Гидролиз. Г. Окисление.

    Молекулярная формула органического вещества, содержащего 52,17% углерода, 13, 04% водорода, 34,78% кислорода, имеющего плотность паров по водороду 23, - это:

А. С 2 Н 4 О. Б. С 2 Н 6 О. В. С 2 Н 4 О 2 . Г. С 2 Н 6 О 2 .

Ключ. Уровень А: 1.А. 2. Б. 3. А. 4.А. 5. Б. 6. Б.

6 баллов – «4», 5 баллов – «3».

Уровень Б: 1. А. 2. В. 3. В. 4. Б 5. Б. 6. Б.

5. Al 4 C 3 + 12 Н 2 О → 3СН 4 + 4Al (OH ) 3

7 баллов – «5», 6 баллов - «4», 5 баллов – «3»

Учащиеся проверяют тестовые задания по ключу и самостоятельно выставляют себе оценки.

3. Актуализация знаний .

    Почему алканы относятся к предельным углеводородам?

    Какие связи образуются между атомами в молекулах алканов?

    Какие типы гибридизации характерны для атомов углерода в алканах?

    Какие еще типы гибридизации атомов углерода существуют?

    Изучение нового материала.

    Гомологический ряд алкенов.

    Изомерия алкенов.

    Номенклатура алкенов.

Самостоятельная работа по учебнику с. (2 мин)

? 1- какие углеводороды можно отнести к непредельным?

2 – что означает термин непредельные углеводороды?

3 – назовите простейший представитель непредельных углеводородов класса алкены.

СН 2 = СН 2 этен (этилен).

Сообщение ученика.

«Впервые этилен был получен в 1669 году немецким химиком Иоганом Иохимом Бехером нагреванием этилового спирта с концентрированной серной кислотой. Современники не смогли по достоинству оценить открытие ученого. Ведь Бехер не только синтезировал новый углеводород, но и впервые применил химический катализатор (серная кислота) в процессе реакции. До этого в научной практике и повседневной жизни применялись только биологические катализаторы природного происхождения – ферменты.

Этилен более 100 лет после его открытия не имел собственного названия. В конце 18 века выяснилось, что при взаимодействии с хлором «газ Бехера» превращается в маслянистую жидкость, после чего его назвали олефином, что значит рождающий масло. Затем это название распространилось на все углеводороды, которые имели подобное этилену строение».

Дайте определение классу алкены.

Алкены (олефины) – ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С n Н 2n .

2. Электронное и пространственное строение этилена.

Демонстрация шаростержневых моделей молекул гексана и этилена

Объяснение по таблице.

В молекуле этилена СН 2 = СН 2 оба атома углерода, связанные двойной связью, находятся в состоянии sp 2 – гибридизации. То есть в гибридизации участвует 1 s -облако и 2 p -облака (в отличие от этана у которого в гибридизации участвуют 1 s -облако и 3 p -облака), и по одному p -облаку у каждого атома углерода остаются негибридизованными.

Оси sp 2 - орбиталей лежат в одной плоскости (в отличие от алканов, в которых атом углерода имеет объемную форму - тетраэдр).

Угол между ними составляет 120 0 (в алканах 109 0 28 /).

Длина двойной связи меньше одинарной и составляет 0,133 нм (у алканов l =0,154 нм).

Из-за наличия двойной связи свободное вращение относительно связи С=С невозможно (тогда как у алканов возможно свободное вращение вокруг одинарной связи).

3. Гомологический ряд алкенов.

?

этен пропен бутен-1

4. Изомерия алкенов.

?

Изомерия алкенов

Структурная Пространственная

Бутен-1 бутен-1 бутен-1

Н Н Н 3 С Н

СН 3 бутен-2 СН 2 - СН 2

! .

5. Номенклатура алкенов.

Объяснение по таблице «Номенклатура алкенов».

1. Выбор главной цепи

Просмотр содержимого документа
«12 урок»

10 класс

Тема . Электронное и пространственное строение алкенов, гомологический ряд алкенов. Алкены: строение, изомерия и номенклатура».

Цель : продолжить формирование понятий об углеводородах с целью выяснения влияния электронного строения алкенов на появление большого числа изомеров у данного класса веществ.

Задачи : образовательные : способствовать формированию у учащихся понятий о химическом и электронном строении, о гомологическом ряде, изомерии и номенклатуре алкенов;

развивающие: продолжить развивать понятие о строении вещества, об изомерии и ее видах; продолжить развивать умения давать названия органическим соединениям по номенклатуре ИЮПАК и строить формулы веществ по названию; работать с тестами; продолжить развивать умения сравнивать строение и виды изомерии алканов и алкенов;

воспитательные : продолжить воспитание познавательного интереса к науке.

Методы : словесные (объяснение, рассказ, беседа);наглядные (демонстрация таблиц, шоростержневых моделей молекул).

Тип урока : изучение нового материала.

Оборудование : таблицы «Строение молекулы этилена», «Строение атома углерода», «Номенклатура алкенов»; ключи к тестам и графическому диктанту; шаростержневые модели молекул гексана, этена, бутена-2 (цис- и транс).

Ход урока.

    Организационный момент.

    Сообщение задач урока.

    Проверка пройденного материала.

1 . Двое учащихся работают у доски : 1-й учащийся – осуществляет цепочку превращений; 2-й ученик – записывает условия протекания реакций в данной цепочке. Остальные учащиеся выполняют задание в тетради.

    Осуществить цепочку превращений по следующей схеме:

Этан → Бромэтан → н-Бутан → Изобутан → Оксид углерода (IV).

    При необходимости укажите условия протекания реакций.

2 . Разноуровневый тестовый контроль .

Учащиеся самостоятельно выбирают уровень сложности задания.

Уровень А (задание на «4»)

    Вещества с общей формулой СnН2n+2 относятся к классу:

А. Алканов. Б. Алкенов.

    Гомологами являются:

А. Метан и хлорметан. Б. Этан и пропан.

    Пи – связь отсутствует в молекуле:

А. Этана. Б. Этена.

    Для алканов характерны реакции:

А. Замещения. Б. Присоединения.

    Определите тип реакции:

СО + 3Н 2 Ni , t C Н 4 + Н 2 О

А. Гидрогалагенирование. Б. Гидрирование.

    Перегонка нефти производится с целью получения:

А. Только бензина и метана. Б. Различных нефтепродуктов.

    Изучение нового материала.

    Понятие о непредельных углеводородах.

    Электронное и пространственное строение этилена.

    Гомологический ряд алкенов.

    Изомерия алкенов.

    Номенклатура алкенов.

Чем отличаются предельные углеводороды от непредельных?

    Какие непредельные углеводороды вам известны?

1. Понятие о непредельных углеводородах .

Алкены

Алкены (непредельные углеводороды, этиленовые углеводороды, олефины) – непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов С n Н 2n .

По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса– ан на– ен : этан (CH 3 -CH 3) – этен (CH 2 =CH 2) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь. Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи.

В молекуле алкена ненасыщенные атомы углерода находятся в sp 2 -гибридизации, а двойная связь между ними образована σ– и π-связью. sp 2 -Гибридные орбитали направлены друг к другу под углом 120°, и одна негибридизованная -орбиталь, расположена под углом 90° к плоскости гибридных атомных орбиталей.

Пространственное строение этилена:

Длина связи С=С 0,134 нм, энергия связи С=С Е с=с = 611 кДж/моль, энергия π-связи Еπ = 260 кДж/моль.

Виды изомерии: а) изомерия цепи; б) изомерия положения двойной связи; в) Z, Е (cis, trans ) – изомерия, вид пространственной изомерии.

Способы получения алкенов

1. CH 3 -CH 3 →Ni, t → CH 2 =CH 2 + H 2 (дегидрирование алканов)

2. С 2 Н 5 OH →H,SO 4 , 170 °C→ CH 2 =CH 2 + Н 2 O (дегидратация спиртов)

3. (дегидрогалогенирование алкилгалогенидов по правилу Зайцева)

4. CH 2 Cl-CH 2 Cl + Zn → ZnCl 2 + CH 2 =CH 2 (дегалогенирование дигалогенопроизводных)

5. HC≡CH + Н 2 →Ni, t → CH 2 =CH 2 (восстановление алкинов)

Химические свойства алкенов

Для алкенов наиболее характерны реакции присоединения, они легко окисляются и полимеризуются.

1. CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br

(присоединение галогенов, качественная реакция)

2. (присоединение галогеноводородов по правилу Марковникова)

3. CH 2 =CH 2 + Н 2 →Ni, t → CH 3 -CH 3 (гидрирование)

4. CH 2 =CH 2 + Н 2 O →H + → CH 3 CH 2 OH (гидратация)

5. ЗCH 2 =CH 2 + 2КMnO 4 + 4Н 2 O → ЗCH 2 OH-CH 2 OH + 2MnO 2 ↓ + 2KOH (мягкое окисление, качественная реакция)

6. CH 2 =CH-CH 2 -CH 3 + КMnO 4 →H + → CO 2 + С 2 Н 5 COOH (жесткое окисление)

7. CH 2 =CH-CH 2 -CH 3 + O 3 → Н 2 С=O + CH 3 CH 2 CH=O формальдегид+пропаналь → (озонолиз)

8. С 2 Н 4 + 3O 2 → 2CO 2 + 2Н 2 O (реакция горения)

9. (полимеризация)

10. CH 3 -CH=CH 2 + HBr →перекись → CH 3 -CH 2 -CH 2 Br (присоединение бро-моводорода против правила Марковникова)

11. (реакция замещения в α-положение)

Просмотр содержимого документа
«12.1 урок»

12 урок 10 класс

Тема . « Номенклатура и изомерия алкенов » .

Цель : продолжить формирование понятий об углеводородах с целью выяснения влияния электронного строения алкенов на появление большого числа изомеров у данного класса веществ.

Задачи :

образовательные : способствовать формированию у учащихся понятий о химическом и электронном строении, о гомологическом ряде, изомерии и номенклатуре алкенов;

развивающие: продолжить развивать понятие о строении вещества, об изомерии и ее видах;

продолжить развивать умения давать названия органическим соединениям по номенклатуре ИЮПАК и строить формулы веществ по названию; работать с тестами; продолжить развивать умения сравнивать строение и виды изомерии алканов и алкенов;

воспитательные : продолжить воспитание познавательного интереса к науке.

Методы : словесные (объяснение, рассказ, беседа); наглядные (демонстрация таблиц, шоростержневых моделей молекул).

Тип урока : изучение нового материала.

Оборудование : таблицы «Строение молекулы этилена», «Строение атома углерода», «Номенклатура алкенов»; ключи к тестам и графическому диктанту; шаростержневые модели молекул гексана, этена, бутена-2 (цис- и транс).

Ход урока.

    Организационный момент.

Вступительное слово учителя - Урок начинается поэтическими строками.

Нам каждый день природа дарит

Прикосновенье к алтарю.

За жизнь – космический подарок –

Тебя, Земля, благодарю.

Круговращение планеты,

Прикосновение стихий,

Все – север, юг, зима и лето,

Дорога, труд, любовь, стихи,

Сплетение души и мысли,

Провалы, взлеты вверх и вниз…

Какой же смысл – в исканье смысла?

Процесс познанья – в этом смысл.

И вот сегодня, как и на других уроках мы будем познавать новое. А познаем мы для того, чтобы уметь применять свои знания в жизни. По теории Бутлерова, свойства веществ зависят от их строения.

Тема сегодняшнего урока – «Алкены: строение, изомерия и номенклатура».

А на последующих уроках мы изучим их свойства и применение.

    Сообщение задач урока.

    Проверка пройденного материала.

1 . Двое учащихся работают у доски : 1-й учащийся – осуществляет цепочку превращений; 2-й ученик записывает условия протекания реакций в данной цепочке. Остальные учащиеся выполняют задание в тетради.

Задание. Осуществить цепочку превращений по следующей схеме:

Этан → Бромэтан → н-Бутан → Изобутан → Оксид углерода (IV).

    Изучение нового материала.

План.

    Гомологический ряд алкенов.

    Изомерия алкенов.

    Номенклатура алкенов.

1 . Гомологический ряд алкенов.

? - Какие вещества называются гомологами?

Запишите структурные формулы гомологов этилена и дайте им название.

СН 2 = СН 2 ; СН 2 = СН – СН 3 ; СН 2 = СН – СН 2 – СН 3 и т.д.

этен пропен бутен-1

2 . Изомерия алкенов.

? – Какие виды изомерии характерны для алканов?

Как вы думаете, а какие виды изомерии возможны у алкенов?

Изомерия алкенов

Структурная Пространственная

Углеродного Положения Межклассовая Геометрическая

скелета двойной (с циклоалканами) (цис- и транс-)

СН 2 =СН–СН 2 –СН 3 СН 2 =СН–СН 2 –СН 3 СН 2 =СН–СН 2 –СН 3 Н 3 С СН 3 Н СН 3

Бутен-1 бутен-1 бутен-1

СН 2 =СН–СН 3 СН 3 –СН=СН–СН 3 СН 2 - СН 2

Н Н Н 3 С Н

СН 3 бутен-2 СН 2 - СН 2

2-метилпропен циклобутан цис-бутен -2 транс-бутен –2

Схема вычерчивается на доске в ходе объяснения, учащиеся записывают в тетрадь.

! Физкультминутка: выполняются упражнения для мышц глаз, головы, плеча, кистей .

3 . Номенклатура алкенов.

Объяснение по таблице «Номенклатура алкенов».

Номенклатура алкенов, разработанная ИЮПАК, схожа с номенклатурой алканов.

Правила составления названий алкенов.

Выбор главной цепи . В случае алкенов самая длинная цепочка атомов углерода должна содержать двойную связь.

Домашнее задание:

Просмотр содержимого документа
«13 урок»

«___»_____________2011г. Урок 13

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

Оборудование:

ХОД УРОКА

I. Организационный момент

1. Способы получения алкенов

C 4 H
октан бутен бутан

бутан бутен водород

калия калия


Запомните!




а) Реакции присоединения

Запомните!

Запомни!


этен полиэтилен

б) реакция окисления

Лабораторный опыт.




– каталичесикое окисление

Запомните главное!




3. Применение алкенов


2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;

7 – получение ацетальдегида;
8 – синтетического каучука.

Домашнее задание:

Просмотр содержимого документа
«14 урок»

«___»_____________2011г. Урок 1 4

Тема урока: Получение алкенов и их применениеАлкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

    рассмотреть конкретные химические свойства этилена и общие свойства алкенов;

    углубить и конкретизировать понятия о пи-связи, о механизмах химических реакций;

    дать первоначальные представления о реакциях полимеризации и строении полимеров;

    разобрать лабораторные и общие промышленные способы получения алкенов;

    продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

    Какие углеводороды называются алкенами?

    Каковы особенности их строения?

    В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 –– C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 –– C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH –– C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН –– С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H : H –– + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 –– n – CH 2 – CH 2 –– (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 –– 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] –– CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

Просмотр содержимого документа
«15 урок»

23.10.2011г. Урок 15 10 класс

Урок на тему: Расчёты по химическим уравнениям, характеризующим свойства и способы получения алкенов, при условии, что одно из реагирующих веществ дано в избытке.

Цели: Научить учащихся составлять и решать химические задачи.

Тип урока: Комбинированный.

Ход урока

I. Организация класса

II. Актуализация знаний, умений и навыков

III. Изучение нового материала:

Решение:

H 2 O H 2 Na 5,6 г

C 2 H 5 OH96%;

112 мл;

0,8 г/ мл.

m(C 2 H 5 OH, р- р)=Vp=112,5 . 0,8=90(г); m(C 2 H 5 OH)=m(C 2 H 5 OH, р- р) . w (C 2 H 5 OH)=90 . 0,96=86,4(г); n(C 2 H 5 OH)=m/M=86,4:46=1,8(моль).

m(H 2 O)= m(C 2 H 5 OH, р- р)- m(C 2 H 5 OH)=90-86,4=3,6(г); n(H 2 O)= m/M=3,6:18=0,2(моль).

n (Na )=m /M =5,6:23=0,24(моль).

по условию 0,24моль 0,2моль

2Na + 2H 2 O  2NaOH + H 2

по уравнению 2моль 2моль

избыток недостаток

послер-ции

по условию 0,04моль 1,8моль

2Na + 2C 2 H 5 OH  2C 2 H 5 ONa + H 2

по уравнению 0,04 моль0,04 моль

недостатокизбыток

послер-ции

m (р-ра)=m (C 2 H 5 OH , р-р)+m (Na )-m (H 2)=90+5,6-(0.02+0,1) . 2=95,36(г).

Т.е. после реакции в растворе:

m (C 2 H 5 OH )=n . M =1,76 . 46=80,96(г),

w (C 2 H 5 OH )=m (C 2 H 5 OH ) / m (р-ра)=80,96:95,36=0,85;

m (C 2 H 5 ONa)= n . M=0,04 . 68=2,72(г),

w(C 2 H 5 ONa)= m (C 2 H 5 ONa)/ m(р- ра)=2,72:95,36=0,03;

w(NaOH)= 1- w (C 2 H 5 OH)- w(C 2 H 5 ONa)=1-0,85-0,03=0,12.

В результате окисления 12,32г метанола и растворения образовавшегося альдегида в 224 мл воды был получен 3%-ный формалин. Определите массовую долю выхода продукта реакции.

Решение: т.к. условие задачи объемное, разбираем его на рисунке-схеме.

224 мл H 2 O

CH 3 OH [O]CH 2 O

12,32 г 3%

n(CH 3 OH)=m/M=12,32:32=0,385(моль);

m (CH 2 O , теор.)=M n = 30 . 0,385=11,55(г)

m (H 2 O )=Vp =224 . 1=224(г), w (H 2 O )=100-3=97(%)

m (CH 2 O ) – 3%, = x – 3%, = m (CH 2 O , прак.) =224 . 3:97= 6,93(г)

m (H 2 O ) – 97%.224 – 97%

w вых. (CH 2 O )= m (CH 2 O ,прак.)/ m (CH 2 O , теор.)= 6,93:11,55=0,6.

Для проверки на основе предыдущей задачи составляем новое условие и решаем.

Раствор какой концентрации получится, если после окисления 12,32г метанола полученный формальдегид (выход составил 60% от теоретически возможного) растворили в 224 мл воды?

Решение:

n (CH 3 OH )=m /M =12,32:32=0,385(моль);

n (CH 2 O )= n (CH 3 OH )= 0,385(моль), т.к. число атомов одинаково.

m (CH 2 O , теор.)=M n = 30 . 0,385=11,55(г);

m (CH 2 O , прак.)= m (CH 2 O , теор.) . w вых. (CH 2 O ):100%=11,55 . 60:100=6,93(г);

m (H 2 O )=Vp =224 . 1=224(г):

m (р-ра)= m (CH 2 O , прак.)+ m (H 2 O )=6,93+224=230,93(г);

w (CH 2 O )= m (CH 2 O , прак.): m (р-ра) . 100%=6,93:230,93 . 100=3(%).

Домашнее задание: П.12 ? 3, 5-9

УРОК ХИМИИ В 9 КЛАССЕ.

Тема: Предмет органической химии. Теория химического строения органических соединений А. М. Бутлерова

Цель: выяснить особенности органических соединений, основные положения теории химического строения А. М. Бутлерова.

Задачи: Образовательная: сформировать понятие о предмете органической химии, рассмотреть особенности органических веществ; актуализировать знания учащихся о валентности; раскрыть основные положения теории химического строения органических соединений А. М. Бутлерова

Развивающая: формировать навыки составления структурных формул органических соединений.

Воспитывающая: формировать стремление к самостоятельности, внимательности, глубокому усвоению знаний

Оборудование: учебно-тематическая карта для организации самостоятельной работы, компьютер

Планируемые результаты обучения:

- Знать особенности органических соединений, основные положения теории химического строения А. М. Бутлерова.

- Уметь объяснять многообразие органических соединений, составлять структурные формулы.

Ход урока.

1. Организационный момент. Слайд 1

2. Мотивация

Общая численность органических веществ в настоящее время составляет более 26 млн веществ, причем каждый год число их увеличивается на 200-300 тыс. новых соединений. При том, общее число неорганических соединений не превышает 700 тыс. Таким образом, число органических веществ в десятки раз превышает число неорганических. Чем обусловлено такое многообразие органических веществ? В чем их особенность? На эти вопросы мы постараемся ответить на сегодняшнем уроке. А также вы познакомитесь с основной теорией органической химии – теорией химического строения органических соединений. Итак, тема нашего урока «Предмет органической химии. Теория химического строения органических соединений А. М. Бутлерова». Демонстрация слайда 2

3. Самостоятельная работа по учебно-тематической карте с учебной литературой.

Учеб - ного

элемента

Руководство по усвоению

учебного материала

УЭ - 0

-

Проблемный вопрос:

УЭ - 1

Слайд № 3,4,5

Р/Т стр. 137 №1

Дайте определение. Органическая химия – это _______

Р/Т стр. 137 №2

Н 2

СН 2 О

C 3 H 6

Н 2 SO 4

С 2 Н 6 О

СН 4

CH 3 NH 2

CO 2

HNO 3

NaOH

C 5 H 10

HNO 2

C 4 H 10

C 6 H 6

SO 2

Н 2 CO 3

C 2 H 4 O

C 3 H 4

CH 2 O

C 2 H 6 O

NO 2

CaC 3

NaHCO 3

C 18 H3 8

P 2 O 5

C 2 H 4

C 4 H 8

C 2 H 4 O

CH 4

CuSO 4

C 2 H 5 O 2

CH 3 N 2

УЭ – 2

Р/Т стр. 137 №3 а,б

А) Метана СН 4 Б) Этилового спирта C 2 H 4 O

Проверка Слайд №7

Слайд № 6.

УЭ - 3

Р/Т стр. 138 №6

Н Н

Н:С:С:О:Н

Н Н

Н О

Н:С:С

Н О:Н

Полные структурные

Сокращённые структурные

Молекулярные

__ __ __ __ __ __ __ __ __ __ __ __ (МОЛЕКУЛЯРНАЯ) формула; полная структурная формула отражает __ __ __ __ __ __ __ (ПОРЯДОК) соединения атомов в молекуле согласно их __ __ __ __ __ __ __ __ __ __ __ (ВАЛЕНТНОСТИ).

Слайд №8

правильный ответ – 21 балл

УЭ - 4

t кип).

Слайд №9

Р/Т стр. 139 №12

СН3

СН3 СН3

Г) СН3

СН3-С-СН3 и СН3-СН-СН2-СН3

СН3 СН3

Слайд №10

Р/т Стр. 139. зад 10.

Слайд №9

УЭ - 5

Цель: познакомиться с 3-м

Слайд №11, 12

Проблемный вопрос: Почему на земле органических веществ намного больше, чем неорганических?

УЭ - выход

Тест

1. Скольким валентен углерод в органических соединениях?

А) 2 Б) 3 В) 4 Г) 6

2. Обязательные элементы, входящие в состав органических соединений

А) водород и кислород Б) водород и углерод

В) углерод и кислород Г) углерод и азот

3. Изомеры это –

А) Вещества имеющие одинаковый качественный и количественный состав, но отличающиеся строением и свойствами.

Б) Вещества отличающиеся на группировку –СН2

В) Вещества имеющие в своём составе азот

Г) Вещества имеющие одинаковый качественный, но различный количественный состав, отличающийся по строению и свойствам.

4. Выберите органические соединения

А) СО2 Б) С2Н6 В) CH 3 NH 2 Г) Н2СО3

5.Напишите полную и сокращенную структурную формулу вещества С3Н8

23 - 30 баллов оценка «3»

31 - 38 баллов оценка «4»

39- 47 баллов - оценка «5»

Д\З

4. Подведение итогов модульного урока. Оцените свою работу.

Меньше 23 баллов – оценка «2»

23 - 30 баллов оценка «3»

31 - 38 баллов оценка «4»

39- 47 баллов - оценка «5»

5. Рефлексия

Составление синквейна

Органическая химия

Два прилагательных или причастия

Три глагола (учит, проводит

Фраза из 4-5 значимых слов

Синоним обобщающий или расширяющий смысл темы

6. Домашнее задание. П.32 в.1,2 письменно в.3-5 письменно. Стр. 201 определение. Р\Т №9 стр139

Учебно-тематическая карта с ученика

Учеб - ного

элемента

Учебный материал с указанием заданий

Руководство по усвоению

учебного материала

УЭ - 0

Интригующая цель - выяснить особенности органических соединений, основные положения теории химического строения А. М. Бутлерова.

- Уметь объяснять многообразие органических соединений, составлять структурные формулы.

Проблемный вопрос: Почему на земле органических веществ намного больше, чем неорганических?

Внимательно прочитай цель урока.

УЭ - 1

Цель: познакомиться с историческим очерком развития и становления органической химии

На какие группы делятся все вещества?

Какие органические вещества вы знаете?

Откуда произошло название «органические вещества»?

Как называется раздел который изучает эти вещества?

Сколько органических веществ известно?

Дайте понятие органическая химия?

Слайд № 3,4,5

Р/Т стр. 137 №1 Правильный ответ за задание–1балл

Дайте определение. Органическая химия – это _______

_______________________________________________

Р/Т стр. 137 №2 Правильный ответ за задание–20баллов

Закрасьте карандашом клетки, в которых записаны формулы органических соединений.

Н 2

СН 2 О

C 3 H 6

Н 2 SO 4

С 2 Н 6 О

СН 4

CH 3 NH 2

CO 2

HNO 3

NaOH

C 5 H 10

HNO 2

C 4 H 10

C 6 H 6

SO 2

Н 2 CO 3

C 2 H 4 O

C 3 H 4

CH 2 O

C 2 H 6 O

NO 2

CaC 3

NaHCO 3

C 18 H3 8

P 2 O 5

C 2 H 4

C 4 H 8

C 2 H 4 O

CH 4

CuSO 4

C 2 H 5 O 2

CH 3 N 2

Работай индивиду-ально в Р/Т.

УЭ – 2

Цель: Выяснить особенности органических веществ.

Записать свойства органических веществ в тетрадь.

Р/Т стр. 137 №3 а,б Правильный ответ за задание–2балла

Составьте уравнение горения органических веществ

А) Метана СН 4 Б) Этилового спирта C 2 H 4 O

Проверка Слайд №7

См. учебник Г, п. 32 стр.194-195. Слайд № 6.

УЭ - 3

Цель: выяснить, что такое валентность, научиться составлять полные структурные, сокращенные структурные, молекулярные формулы.

Р/Т стр. 138 №6 Правильный ответ за задание–4балла

Определите чему равна валентность в органических соединениях а) углерода _____ б) кислорода ____

в) водорода _____ г) азота ____

Р/Т стр. 138 №7 (Ацетилен, этиловый спирт, уксусная кислота) Правильный ответ за задание–12балл

Заполни таблицу и проанализируй записанные полные структурные формулы веществ и вставьте в предложение пропущенные слова.

Н Н

Н:С:С:О:Н

Н Н

Н О

Н:С:С

Н О:Н

Полные структурные

Сокращённые структурные

Молекулярные

Количественный и качественный состав веществ показывает

Формула; полная структурная формула отражает __ __ __ __ __ __ __ соединения атомов в молекуле согласно их __ __ __ __ __ __ __ __ __ __ __.

Отсюда вытекает 1 положение теории строения органических соединений. Слайд №8

См. учебник Г, п. 32 стр.195-196. до слов: Теперь попробуйте сами …..

правильный ответ – 21 балл

УЭ - 4

Цель: Выяснить что такое изомерия, изомеры.

Проанализируйте качественный и количественный состав вещества и физические свойства (t кип).

Эти вещества называются изомерами.

Попробуйте дать определение терминам: изомерия, изомеры (Р/Т №11). Запишите определения. Изомеры – это __________

Изомирия – это _______________________________________

_____________________________________________________

Слайд №9

Р/Т стр. 139 №12 Правильный ответ за задание–2б

Определите какие вещества, структурные формулы которых записаны ниже, являются изомерами.

А) СН3-СН2-СН3 и СН3-СН2-СН2-СН3

Б) СН3-СН-СН2-СН3 и СН3-СН2-СН2-СН2-СН3

СН3

В) СН3-СН -СН3 и СН3-СН-СН2-СН3

СН3 СН3

Г) СН3

СН3-С-СН3 и СН3-СН-СН2-СН3

СН3 СН3

Правильный ответ за задание–2балл

Отсюда вытекает 2 положение теории строения органических соединений. Слайд №10

Р/т Стр. 139. зад 10.

Проверка стр. 201 определе-ние.

Слайд №9

УЭ - 5

Цель: познакомиться с 3-м положением теории строения органических соединений и с основным положение современной теории строения веществ, со значением теории Бутлерова.

Слайд №11, 12

Проблемный вопрос: Почему на земле органических веществ намного больше, чем неорганических?

Правильный ответ за задание–1б

УЭ - выход

Тест

Каждый правильный ответ 1 балл

Меньше 23 баллов – оценка «2»

23 - 30 баллов оценка «3»

31 - 38 баллов оценка «4»

39- 47 баллов - оценка «5»

Работай индивиду-ально, подсчитай баллы.

Максимальная оценка за работу на уроке – 47 балла.

Д\З

П.32 в.1,2 писменно в.3-5 писменно. Стр. 201 определение. Р\Т №9 стр139

На уроке химии мы узнаем много нового и интересного. На ваших столах помощники - конспекты урока, в них делайте записи по ходу урока.

  1. Углерод называют «элемент жизни»

Каковы степени окисления углерода?

Эти числа по модулю будем называть ВАЛЕНТНОСТЬ.

Неорганическая химия изучает вещества неживой природы - минеральные. Как назвать вещества живой природы - растительного и животного происхождения, содержащиеся в живых организмах?

Наука, изучающая такие вещества - органическая химия.

1 слайд

Тема урока «Введение в курс органической химии».

Цели урока: 1. Ознакомление с новым разделом химии - органическая химия.

2. Изучить состав, строение, свойства веществ.

3. Необходимо для ____________

2 слайд

Впервые понятие ОВ ввел в науку Й.Я.Берцелиус.

Существует ли резкая граница между органическими и неорганическими веществами?

3 слайд

В свое время зарубежные и российские ученые в лабораториях синтезировали из неорганических веществ органические.

По каким признакам можно объединить органические вещества?

4 слайд

Перед вами названия и формулы органических веществ. В чем сходство.

Какой тип химической связи, температура плавления?

5 слайд

Проведем эксперимент: обугливание сахара

Запишем пункт 3.

Неорганических веществ известно несколько сот

тысяч, а сколько органических?

6слайд

Почему так много?

Демонстрирую: Ручки, линейки - из какого вещества? Это тоже органическое вещество, синтезированное в лаборатории, его в природе нет. но название «органическое» сохранилось.

7 слайд

В результате синтеза получены: волокна, лаки, краски и еще можно получить другие вещества.

Какой можно сделать вывод: в чем сходство и в чем различие ОВ от неорганических?

3.

Можно ли законы, понятия неорганической химии применить к ОВ?

Например, понятие валентность?

На доске формулы ОВ:

Задание: Установите валентность углерода.

СН 4 С 2 Н 4 С 2 Н 2 С 3 Н 8

Валентность «непонятная»...

Ученые прияли валентность углерода равную IV. Задание: Составьте структурные формулы веществ.

Н Н Н Н Н Н

/ / / / / /

Н- С- Н Н- С = С – Н Н- С = С-Н Н-С –С –С –Н

/ / / /

Н Н Н Н

Вывод: соблюдая валентность, кроме простой (одинарной) связи появляются двойная и тройная, именно между атомами углерода.

8слайд

Запишем причины многообразия:


Чтобы понять смысл пункта 5, обратимся к буквам: КОЛБА - составьте из этих же букв новое слово.

В чем различие?

В чем сходство?

Количественный и качественный состав одинаковый, но последовательность соединения, т.е строение различное.

В химии такое явление имеет название ИЗОМЕРИЯ.

4.

9 слайд

Лабораторная работа. Собери молекулу как на рисунке и найди соответствующую ей формулу на слайде.

Отчет: 1 гр. 2 гр. 3 гр. 4 гр. 5 гр.

Итак, в чем сходство и в чем различие изомеров?

10 слайд

Добро пожаловать в мир органической химии.

5. Итоги урока:

С каким разделом химии ознакомились?

Что она изучает?

Для чего необходимо

Тестирование:

  1. Валентность углерода в ОВ?
  2. Имя ученого, который ввел понятие ОВ?
  3. Явление, в котором качественный и количественный состав одинаковый, а последовательность соединения разная?
  4. Порядок соединения атомов в молекуле?
  1. Метод получения новых веществ называют? Проверяем самостоятельно.

Совсем нет ошибок или одна, то поднимите руку.

6.

11слайд

Составить изомеры состава С 6 Н 14 (их 5)

Муниципальное Бюджетное Общеобразовательное Учреждение

Средняя Общеобразовательная Школа №14

им.Героя Советского Союза Белого С.Е.

х.Бейсужек Второй

РАЗРАБОТКА УРОКА

ПО ТЕМЕ: « ОРГАНИЧЕСКАЯ

ХИМИЯ.

ПРЕДМЕТ ХИМИИ.

ИСТОРИЯ РАЗВИТИЯ ОРГАНИЧЕСКОЙ

ХИМИИ».

Учитель: Грекова Маргарита Анатольевна

Направление: Естественно-научное

2013г

Пояснительная записка.

Данная работа представлена по естественнонаучному направлению. Тема урока «Органическая химия. Предмет химии. История развития органической химии».

В 10м классе обучаются 8 учащихся: 3 мальчика, 5 девочек. По социальному положению:4 учащихся из полных семей, 1 из неполных, 3 учащихся из опекаемых семей. Психоэмоциональное состояние класса нормальное, средний уровень развития.

Курс программы Органической химии в 10 классе разработан на основе авторской программы по химии (Авторы и составители программы Новошинский И. И., Новошинская Н. С, М. «Русское слово» 2008г. ), составленной на основе Федерального компонента государственного стандарта общего образования по химии 10 класса в соответствии с существующей концепцией химического образования и реализующей принцип концентрического построения курса. Авторы учебника Новошинский И.И., Новошинская Н.С. «Русское слово» 2009г. Раздел: Введение в органическую химию. Органическая химия в 10 классе изучается 2 часа в неделю. В год 68 часов.

Цели урока:

образовательные: Раскрыть пред­мет органической химии. Дать первоначальное понятие об органических веществах, их особенностях в строении, свойствах в сравнении с неорганическими. И

воспитательные: Показать роль органи­ческой химии в жизни современного общества. Формирование научной картины мира. Формирование мировоззренческих понятий: о материальном единстве веществ, причинно-следственной зависимости между строением и свойствами органических веществ.

развивающие: Развивать умения учащихся сравнивать, обобщать, проводить аналогию между неорганическими и органическими веществами.

Тип урока : урок объяснения нового материала

Методы ведения :

общие: объяснительно-иллюстративный

частные : словесно-наглядный

конкретные : беседа

Межпредметные связи.

Биология. Тема: «Органические вещества клетки»

Химия в медицине. Тема: «Значение химии в медицине»

Оборудование: Демонстрационные образцы: коллекции органических веществ, материалов и изделий из них. Презентация, проектор, мультимедийное оборудование, ноутбук

Сценарий урока

План

1.Организационный момент

2.Введение в тему урока

3.Объяснение нового материала

4. Закрепление

5.Домашнее задание

6.Итоги урока

Ход урока

1.Организационный момент: Приветствие, проверка посещаемости, сообщение темы урока (слайд1)2.Введение в тему урока Начиная с сегодняшнего занятия приступаем к изучению нового раздела химии – органической, которую будем изучать до конца учебного года. Сегодня на занятии мы должны будем рассмотреть понятие органической химии и особенности органических веществ. Давайте посмотрим на какие два типа делятся все вещества: органические и неорганические (слайд2)

3.Объяснение нового материала:

Органическая химия - раздел химии, изучающий соединения углерода,

их структуру, свойства, методы синтеза.

Органическими называют соединения углерода с другими элементами.

Органические вещества – это соединения углерода с водородом, кислородом, азотом и некоторыми другими элементами.

На сегодняшний день органическая химия - один из самых крупных и важных разделов химии. Это объясняется следующими обстоятельствами: (слайд3)

    Число известных органических соединений увеличивается в геометрической прогрессии и на сегодняшний день превышает 18 млн., в то время как неорганических веществ известно немногим более 100 тысяч.

    Большинство современных промышленных процессов в химической индустрии - это реакции и получение органических веществ. Это лекарственные препараты, средства повышения производительности сельского хозяйства, полимерные материалы, красители, пищевые добавки, косметические средства, пластмассы, строительные
    материалы, бытовая химия и многое другое – все это продукция основного
    (многотоннажного) или тонкого органического синтеза.

    Большинство процессов, протекающих в живых организмах и обеспечивающих их существование, - химические реакции органических веществ. Органическая химия - это химия жизни.

    Химики научились синтезировать очень сложные природ­ные вещества: углеводы, белки, нуклеиновые кислоты. На помощь органическому синтезу в этих случаях приходит биотехнология : крупные молекулы конструируют из более простых «кирпичиков» «специально обученные» микроорганизмы и клеточные культуры. На основе достижений органической химии развивается генная инженерия , которая находит всё более широкое применение в биологических и медицинских целях.

Особенности строения и свойств органических соеди­нений (слайд4)

    Углерод - единственный элемент Периодической системы, атомы которого способны образовывать очень длинные цепочки, соединяясь друг с другом. Этим объясняется великое множество органических веществ. В отличие от неорганических молекул, органические могут иметь огромную относительную молекулярную массу, достигающую нескольких миллионов.

    Наиболее важными с теоретической точки зрения считают соединения углерода и водорода (углеводороды) . Все остальные классы органических веществ можно рассматривать как производные углеводородов, в которых часть атомов водорода замещена на другие атомы или группы атомов.

3.Поскольку органические вещества, как правило, содержат по­мимо углерода водород, то при горении они образуют углекислый газ и воду.

? Давайте вспомним какие существуют типы химической связи и в каких случаях они образуются?

4.Наиболее распространенным типом связи между атомами в органических веществах является ковалентная связь. Ковалентная полярная связь образуется между атомами С и О, С и Н, С и N, ковалентная неполярная связь образуется между атомами углерода С и С. В органических соединениях также иногда встречается ионная связь (в солях карбоновых кислот - между кислотным остатком и металлом) и межмолекулярная водородная связь (между молекулами спиртов, карбоновых кислот и т.д.).

Классификация ОВ (слайд 5-7)

Природные образованы естественным путем, без вмешательства человека. Природные органические вещества и их превращения лежат в основе явлений Жизни. Поэтому органическая химия является химическим фундаментом биологической химии и молекулярной биологии - наук, изучающих процессы, происходящие в клетках организмов на молекулярном уровне. Исследования в этой области позволяют глубже понять суть явлений живой природы.

Искусственные условиях, похожие на природные вещества, но в живой природе не встречаются. Так на основе природного органического соединения целлюлозы получают искусственные волокна (ацетатное, вискозное и др.)

Синтетические создает человек в лабораторных условиях, схожих веществ в природе нет. К ним относятся, например, синтетические каучуки, плстмассы, лекарственные препараты, красители и т.п.

История развития органической химии (слайд 8-10)

Предпосылки возникновения.

В конце XVIII - начале XIX в. в науке химии господствовало учение под названием «витализм» (от лат. - жизнь). Сторонники витализма утверждали, что любые вещества живой природы могут об­разовываться в живых организмах только под действием особой «жизненной силы». Благодаря этому учению исследования строения и свойств растительных и животных веществ выделились в отдель­ный раздел химии. Шведский химик Йене Якоб Берцелиус 1807г. назвал его органической химией, а предмет ее изучения - органическими веще­ствами (находятся в живых организмах). С развитием и совершенствованием химического эксперимен­та стало ясно, что органические вещества могут быть синтезированы из неорганических (или, как их называли раньше, минеральных) вне всякого живого организма, в колбе или пробирке, но название органических веществ осталось.

Развитие органической химии (слайд 11)

Основные этапы:

    1824г. – синтезирована щавелевая кислота (Ф.Вёллер);

    1828г. – мочевина (Ф.Вёллер);

    1842г. – анилин (Н.Н.Зинин);

    1845г. – уксусная кислота (А.Кольбе);

    1847г. – карбоновые кислоты (А.Кольбе);

    1854г. – жиры (М.Бертло);

    1861г. – сахаристые вещества (А. Бутлеров)


В 1928 году Вёллер показал, что неорганическое вещество-циановокислый аммоний-при нагревании превращается в продукт жизнедеятельности животного организма-мочевину.


В 1845 г. Кольбе синтезировал органическое вещество-уксусную кислоту, в качестве исходных веществ он использовал древесный уголь, серу, хлор и воду. За сравнительно короткий период были синтезированы и другие органические кислоты, которые раньше выделялись только из растений.


В 1854 г. Бертло удалось синтезировать вещества, относящиеся к классу спиртов.


В 1861 г. А.М.Бутлеров действуя известковой водой на параформальдегид впервые осуществил синтез метиленитана, которое относится к сахарам, которые играют важную роль в процессах жизнедеятельности организмов.

Сравнение свойств органических неорганических веществ

(таблица). Самостоятельная работа учащихся с таблицей.

4.Закрепление

Вопросы для закрепления знаний:

1. Как в древности получали органические вещества? Почему данные вещества назвали органическими?

О т в е т. Все органические вещества получали исключительно из продуктов жизнедеятельности растительных и животных организмов или в результате их переработки. Отсюда и произошло название «органические вещества».

2. Что изучает органическая химия?

О т в е т. Раздел химии, который изучает органические вещества, стали называть органической химией.

3. Кто ввел понятия «органические вещества» и «органическая химия»?

Ответ. Й. Я. Берцелиус.

4. Какой химический элемент в обязательном порядке входит в состав органических веществ?

О т в е т. В состав всех органических веществ входит химический элемент углерод.

5. Какое еще можно дать определение органической химии?

О т в е т. Органическая химия – это химия соединений углерода.

6. Помимо углерода какой химический элемент входит в состав органических веществ?

О т в е т. Помимо углерода в состав всех органических веществ входит химический элемент водород. Могут еще входить О, S, N и другие элементы.

А теперь представьте, что будет, если исчезнут органические вещества.

Не станет больше деревянных предметов, не будет шариковой ручки, сумки для книг, самих книг и тетрадей, сделанных из органического вещества – целлюлозы. В классе не будет линолеума, от парт останутся лишь металлические ножки. По улице не будут ездить машины – нет бензина, а от самих машин останутся лишь металлические части. Исчезнут корпуса компьютеров и телевизоров. В аптеках не будет большинства лекарств, и нечего будет есть (вся пища тоже состоит из органических соединений). Нечем будет помыть руки и нечего надеть на себя, ведь и мыло и хлопчатобумажные, шерстяные, синтетические волокна, кожа и кожезаменители, красители для тканей – все это производные углеводородов. Да и смотреть на этот мир будет некому – от нас останется лишь соленая вода да скелет, ведь организмы всех живых существ состоят из органических соединений.

Теперь вы понимаете какова роль органических соединений в природе и нашей жизни

5. Домашнее задание:

Введение п.1, конспект, таблица

Рефераты на тему «А.М.Бутлеров», «Значение органической химии»

6. Итоги: Таким образом, сегодня мы познакомились с органическими веществами, чем они отличаются от неорганических, изучили историю развития органической химии. И убедились в том, что органические вещества играют огромную роль в нашей жизни. Оценки за урок.

Что еще почитать