С какими оксидами реагируют основные оксиды. Физические и химические свойства оксидов. Список основных оксидов

Формула оксидов необходима для возможности решения задач и понимания возможных вариантов соединений химических элементов. Общая формула оксидов - Э х О у. Кислород находится на втором месте после фтора по величине значение электроотрицательности , что является причиной того, что большинство соединений химических элементов с кислородом являются оксидами.

По классификации оксидов , солеобразующими оксидами являются те оксиды , которые могут взаимодействовать с кислотами либо основаниями с возможностью появления соответствующей соли и воды. Солеобразующими оксидами называют:

Основные оксиды, зачастую образующиеся из металлов со степенью окисления +1, +2. Могут реагировать с кислотами, с кислотными оксидами, с амфотерными оксидами, с водой (только оксиды щелочных и щелочно-земельных металлов). Элемент основного оксида становится катионом в образующейся соли. Na 2 O, CaO, MgO, CuO.

  1. Основный оксид + сильная кислота → соль + вода: CuO + H 2 SO 4 → CuSO 4 + H 2 O
  2. Сильноосновный оксид + вода → гидроксид: CaO + H 2 O → Ca(OH) 2
  3. Сильноосновный оксид + кислотный оксид → соль: CaO + Mn 2 O 7 → Ca(MnO 4) 2
  4. Основный оксид + водород → металл + вода: CuO + H 2 → Cu + H 2 O

Примечание: металл менее активный, чем алюминий.

Кислотные оксиды - оксиды неметаллов и металлов в степени окисления +5 - +7. Могут реагировать с водой, щелочами, основными оксидами, амфотерными оксидами. Элемент кислотного оксида входит в состав аниона образующейся соли. Mn 2 O 7 , CrO 3 , SO 3 , N 2 O 5 .

  1. Кислотный оксид + вода → кислота: SO 3 + H 2 O → H 2 SO 4 . Некоторые оксиды, к примеру SiO 2 , не могут вступать в реакцию с водой, поэтому их кислоты получают не прямым путём.
  2. Кислотный оксид + основный оксид → соль: CO 2 + CaO → CaCO 3
  3. Кислотный оксид + основание → соль + вода: SO 2 + 2NaOH → Na 2 SO 3 + H 2 O. Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей: Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O, CaCO 3 + H 2 O + CO 2 → Ca(HCO 3) 2
  4. Нелетучий оксид + соль 1 → соль 2 + летучий оксид: SiO 2 + Na 2 CO 3 → Na 2 SiO 3 + CO 2
  5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1: 2P 2 O 5 + 4HClO 4 → 4HPO 3 + 2Cl 2 O 7

Амфотерные оксиды , образуют металлы со степенью окисления от +3 до +5 (к амфотерным оксидам относятся также BeO, ZnO, PbO, SnO). Реагируют с кислотами, щелочами, кислотными и основными оксидами.

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства : ZnO + 2HCl → ZnCl 2 + H 2 O

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства :

  • ZnO + 2KOH + H 2 O → K 2 (в водном растворе).
  • ZnO + 2KOH → K 2 ZnO 2 (при сплавлении).

Несолеобразующие оксиды не вступают в реакцию ни с кислотами, ни с основаниями, а значит, солей не образуют. N 2 O, NO, CO, SiO.

В соответствии с номенклатурой ИЮПАК, названия оксидов складываются из слова оксид и названия второго химического элемента (с меньшей электроотрицательностью) в родительном падеже:

  • Оксид кальция - CaO.

Если элемент может образовывать несколько оксидов, то в их названиях следует указать степень окисления элемента:

  • Fe 2 O 3 - оксид железа (III);
  • MnO 2 - оксид марганца (IV).

Можно использовать латинские приставки для обозначения числа атомов элементов, которые входят в молекулу оксида:

  • Na 2 O - оксид динатрия;
  • CO - монооксид углерода;
  • СО 2 - диоксид углерода.

Часто используются также тривиальные названия некоторых оксидов:

Названия оксидов.

Формула оксида

Систематическое название

Тривиальное название

Угарный газ

Углекислый газ

Оксид магния

Жженая магнезия

Оксид кальция

Негашеная известь

Оксид железа (II)

Закись железа

Fe 2 O 3

Оксид железа (III)

Окись железа

Оксид фосфора (V)

Фосфорный ангидрид

Н 2 О 2 Пероксид водорода
SO 2 Оксид серы (IV)
Ag 2 O Оксид серебра (I)

Cu 2 O 3

Оксид меди (III) триоксид димеди
CuO Оксид меди (II) окись меди
Cu 2 O Оксид меди (I) Закись меди, гемиоксид меди, оксид димеди

Составить формулу оксидов.

При составлении формул оксида первым ставят элемент, степень окисления которого со знаком +, а вторым элемент с отрицательной степенью окисления. Для оксидов это всегда кислород.

Последующие действия по составлению формулы оксида:

1. Расставить степени окисления (степень окисления) для каждого атома. Кислород в оксидах всегда имеет степень окисления -2 (минус два).

2. Для того, чтобы правильно узнать степень окисления второго элемента, нужно заглянуть в таблицу возможных степеней окисления некоторых элементов.

При составлении названий веществ чаще всего использую русские названия элементов, к примеру, дикислород, дифторид ксенона, селенат калия. Иногда для некоторых элементов в производные термины вводят корни их латинских наименований:

Названия элементов в составлении формул оксидов.

Ag - аргент

As - арс, арсен

Ni - никкол

O - окс, оксиген

C - карб, карбон

H - гидр, гидроген

Si - сил, силик, силиц

Hg - меркур

Mn - манган

К примеру: карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки:

Числовые приставки в составлении формул оксидов.

Неопределенное число указывается числовой приставкой n - поли.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

Формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков.

Кислотный гидроксид

Кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3- - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3- - арсенат

В 4 О 7 2- - тетраборат

ВiО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2- - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2- - хромат

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2- - дихромат

FeO 4 2- - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5- - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2- - манганат

MоO 4 2- - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3- - ортофосфат

НPO 4 2- - гидроортофосфат

Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4- - дифосфат

ReO 4 - - перренат

SO 3 2- - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2- - сульфат

НSO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2- - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2- - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2- - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2- - селенит

H 2 SeO 4 - селеновая

SeO 4 2- - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2- - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4- - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2- - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2- - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6- - ортотеллурат

VO 3 - - метаванадат

VO 4 3- - ортованадат

WO 4 3- - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например.

Оксиды - сложные вещества, состоящие из двух элементов, один из которых - атом кислорода в степени окисления -2 .
По способности образовывать соли оксиды делят на солеобразующие и несолеобразующие (СО,SiO,NO,N 2 О). Солеобразующие оксиды, в свою очередь, классифицируют на основные, кислотные и амфотерные .
Основными называются оксиды, которым соответствуют основания, кислотными - оксиды, которым отвечают кислоты. К амфотерным относятся оксиды, проявляющие химические свойства как основных, так и кислотных оксидов.
Основные оксиды образуют только элементы-металлы: щелочные (Li 2 О, Na 2 О, К 2 О, Cs 2 О, Rb 2 О), щелочноземельные (CaO, SrO, BaO, RaO) и магний (MgO), а также металлы d-семейства в степени окисления +1, +2, реже +3(Cu 2 O, CuO, Ag 2 O, СrO, FeO, MnO, СоO, NiO).

Кислотные оксиды образуют как элементы-неметаллы (СО 2 , SO 2 , NO 2 ,Р 2 O 5 , Cl 2 O 7), так и элементы-металлы, степень окисления атома металла должна быть +5 и выше(V 2 O 5 , СrO 3 , Mn 2 O 7 , MnO 3). Амфотерные оксиды образуют только элементы металлы (ZnO, AI 2 O 3 , Fe 2 O 3 , BeO, Cr 2 O 3 , PbO, SnO, MnO 2).

В обычных условиях оксиды могут находиться в трех агрегатных состояниях: все основные и амфотерные оксиды твердые вещества, кислотные оксиды могут быть жидкими (SO 3 ,Сl 2 O7,Mn 2 O7), газообразными (CO 2 , SO 2 , NO 2) и твердыми (P 2 O 5 , SiO 2). Некоторые имеют запах (NO 2 , SO 2), однако большинство оксидов запаха не имеют. Одни оксиды окрашены: бурый газ NO 2 , вишнево-красный CrO 3 , черные CuO и Ag 2 O, красные Cu 2 O и HgO, коричневый Fe 2 O 3 , белые SiO 2 , Аl 2 O 3 и ZnO, другие - бесцветные (H 2 O, CO 2 , SO 2).

Большинство оксидов устойчивы при нагревании; легко разлагаются при нагревании оксиды ртути и серебра. Основные и амфотерные оксиды имеют , для них характерна кристаллическая решетка ионного типа. Большинство кислотных оксидов вещества (одно из немногих исключений - оксид кремния (IV), имеющий атомную кристаллическую решетку).

Al 2 O 3 +6KOH+3H 2 O=2K 3 - гексагидроксоалюминат калия;
ZnO+2NaOH+H 2 O=Na 2 - тетрагидроксоцинкат натрия;

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3P 2 O 3 + 4HNO 3 + 7H 2 O =t o => 4NO + 6H 3 PO 4
(разб.)
P 2 O 3 + 4HNO 3 + H 2 O =t o => 2H 3 PO 4 + 4NO 2
(конц.)

4) Оксид серы (IV) SO 2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO 3 + SO 2 =t o => H 2 SO 4 + 2NO 2
(конц.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют слабые кислоты или кислоты средней силы, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 , Fe(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 = t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 - тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 - тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na - тетрагидроксоалюминат натрия

Cr 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 - гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x- , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH = t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH = t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH = t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH = t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH = t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 = t o => Na 2 ZnO 2 + 2H 2 O

Na = t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов с солями

Чаще всего соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 = t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 = t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей - сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Способы получения.

Ограничения и примечания

1. Окисление простых веществ:

а) металлов: 2Ca + O 2  2CaO

б) неметаллов:

4P + 3O 2 (нед) 2P 2 O 3

4P + 5O 2 (изб) 2P 2 O 5

(Из S – SO 2 , из Fe – Fe 2 O 3 и Fe 3 O 4 , из N 2 – NO)

С кислородом не реагируют галогены, инертные газы, Au, Pt. Азот реагирует в жестких условиях (2000°C).

2. Окисление сложных веществ:

а) водородных соединений:

2Н 2 S + 3O 2  2H 2 O + 2SO 2

б) сульфидов, карбидов, фосфидов (бинарных соединений):

2ZnS + 3O 2 2ZnO + 2SO 2

Каждый элемент сложного вещества окисляется в соответствии со своими свойствами.

3. Разложение гидроксидов и солей:

а) гидроксидов (оснований и кислот):2Al(OH) 3 → t Al 2 O 3 + 3H 2 O

H 2 SiO 3 → t SiO 2 + H 2 O

б) карбонатов: СаСО 3 → t CaO+CO 2

Гидроксиды и карбонаты щелочных металлов (Na,K, Rb,Cs) не разлагаются.

4. Окисление кислородом или озоном

а) кислородом:

2СО + О 2  2СО 2

б) озоном:

NO + O 3  NO 2 + O 2

Возможна, если элемент имеет несколько оксидов (сера, фосфор, углерод, азот, железо).

Свойства оксидов.

Основные оксиды – оксиды, которым соответствуют основания. Это оксиды металлов со степенями окисления +1 и +2, кроме амфотерных (ZnO, BeO, SnO, PbO)

Свойства основных оксидов.

Свойства

Примеры реакций

Ограничения и примечания

1) Реакция с растворами кислот

Li 2 O + 2HCl= 2LiCl+ H 2 O

NiO + H 2 SO 4 = NiSO 4 + H 2 O

Кислота должна существовать в виде раствора (не реагируют кремниевая, сероводородная, угольная)

2) Реакция с водой

Li 2 O + H 2 O = 2LiOH

BaO + H 2 O = Ba(OH) 2

(только 8 оксидов: IA группа, СаО, SrO, ВаО)

Оксид реагирует с водой, только если в результате образуется растворимый гидроксид (щелочь).

3) Реакция с кислотными и амфотерными оксидами

BaO + CO 2 = BaCO 3 ,

FeO + SO 3 = FeSO 4 ,

CuO + N 2 O 5 = Cu(NO 3) 2

СаО + SO 2 = CaSO 3

Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду.

4) Восстановление оксида до металла или до низшего оксида :

MnO + C = Mn + CO

(при нагревании),

FeO + H 2 = Fe + H 2 O

(при нагревании).

Fe 2 O 3 + CO = FeO + CO 2

В качестве восстановителей

используют: СО, С, водород, алюминий, магний.

С водородом реагируют оксиды неактивных металлов.

5) Окисление кислородом.

4FeO + O 2 = 2Fe 2 O 3

Если металл имеет несколько оксидов с разными степенями окисления.

Кислотные оксиды – оксиды, которым соответствуют кислоты.

Кислотные оксиды при комнатной температуре бывают:

*газы (например: СО 2 , SO 2 , NO, SeO 2)*жидкости (например, SO 3 , Mn 2 O 7) *твердые вещества (например: B 2 O 3 , SiO 2 , N 2 O 5 , P 2 O 3 , P 2 O 5 , I 2 O 5 , CrO 3).

Свойства кислотных оксидов.

Свойства

Примеры реакций

Примечания

1) Реакция с основа - ниями

CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O

SiO 2 + 2KOH = K 2 SiO 3 + H 2 O (при нагревании),

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O,

N 2 O 5 + 2KOH = 2KNO 3 + H 2 O.

Реакция возможна со щелочами. Наиболее активные кислотные оксиды (SO 3 , CrO 3 , N 2 O 5 , Cl 2 O 7) могут реагировать и с нерастворимыми (слабыми) основаниями.

2) Реакция с амфотер-ными и основными оксидами

CO 2 + CaO = CaCO 3

P 2 O 5 + 6FeO = 2Fe 3 (PO 4) 2

(при нагревании)

N 2 O 5 + ZnO = Zn(NO 3) 2

Один из реагирующих оксидов (основный или кислотный) должен соответствовать сильному гидроксиду .

3) Реакция с водой. Образуют - ся КИСЛОТЫ.

N 2 O 3 + H 2 O = 2HNO 2

SO 2 + H 2 O = H 2 SO 3

N 2 O 5 + H 2 O = 2HNO 3

SO 3 + H 2 O = H 2 SO 4

Оксид реагирует с водой, если в результате образуется растворимый гидроксид. Не реагирует с водой SiO 2 .

4) Реакции с солями летучих кислот.

SiO 2 + K 2 CO 3 = K 2 SiO 3 + CO 2 

(при нагревании)

Твёрдые, нелетучие оксиды (SiO 2 ,P 2 O 5) вытесняют из солей летучие.

5) Окисле - ние.

2SO 2 + O 2 ⇆ 2SO 3

Низшие оксиды окисляются до высших.

Амфотерные оксиды – оксиды, способные реагировать и с кислотами, и со щелочами. По химическим свойствам амфотерные оксиды похожи на основные оксиды и отличаются от них только своей способностью реагировать с щелочами , как с твердыми (при сплавлении), так и с растворами, а также с основными оксидами.

Вещества, образуемые катионами амфотерных металлов в щелочной среде:

Степень окисления

В растворе

В расплаве

(Zn , Be , Sn )

Na 2 [ Zn (OH ) 4 ]

тетрагидроксоцинкат натрия

Na 2 ZnO 2

цинкат натрия

(Al , Cr , Fe * )

Na [ Al (OH ) 4 ]

тетрагидроксоалюминат натрия

Na 3 [ Al (OH ) 6 ]

гексагидроксоалюминат натрия

NaAlO 2

метаалюминат натрия и

Na 3 AlO 3

ортоалюминат натрия

*) железо не образует устойчивых гидроксокомплексов, амфотерно только в расплаве, образуя NaFeO 2

СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ.

Примеры реакций

Примечания

1) Реагируют с кислотами , так же, как основные оксиды – образуются соли.

ZnO + 2HCl = ZnCl 2 + H 2 O

Al 2 O 3 + 6HNO 3 = 2Al(NO 3) 3 +3H 2 O

Только с сильными кислотами

2) Взаимодействуют с растворами щелочей – образуются растворы гидроксокомплексов.

Al 2 O 3 + 2KOH +3H 2 O = 2K или K 3

ZnO +2NaOH +H 2 O=Na 2

3) Реагируют с расплавами щелочей – образуя соли, при этом проявляют свойства кислотных оксидов.

Al 2 O 3 + 2KOH → t 2KAlO 2 + H 2 O­ (или K 3 AlO 3)

ZnO + 2KOH → t K 2 ZnO 2 + H 2 O

4) При сплавлении могут взаимодействовать с карбонатами щелочных металлов , как со щелочами.

Al 2 O 3 + Na 2 CO 3 → t 2NaAlO 2 +CO 2  (или Na 3 AlO 3)

ZnO + Na 2 CO 3 → t Na 2 ZnO 2 + CO 2 

При изучении химических свойств воды вы узнали, что многие оксиды (окислы) неметаллов, вступая в реакцию с водой, образуют кислоты, например:

SO 3 + H 2 O = H 2 SO 4 + Q

Некоторые оксиды металлов, взаимодействуя с водой, образуют основания (щелочи), например:

CaO + H 2 O = Ca(OH) 2 + Q

Однако свойство оксидов вступать в реакцию с водой не является общим для всех веществ этого класса. Многие оксиды, например двуокись кремния SiO 2 , оксид углерода СО, оксид азота NO, оксид меди CuO, оксид железа Fe 2 O 3 и др., не взаимодействуют с водой.

Взаимодействие оксидов с кислотами

Вам известно, что некоторые оксиды металлов вступают в реакцию с кислотами с образованием соли и воды, например:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Взаимодействие оксидов с основаниями

Некоторые оксиды (углекислый газ СO 2 , сернистый газ SO 2 , фосфорный ангидрид Р 2 O 5 и др.) не вступают в реакцию с кислотами с образованием соли и воды. Выясним: не взаимодействуют ли они с основаниями?

Сухую колбу наполним углекислым газом и насыплем в нее едкий натр NaOH. Закроем колбу резиновой пробкой с вставленной в нее стеклянной трубкой и надетой на ее свободный конец резиновой трубкой с зажимом. Прикоснувшись рукой к колбе, мы ощутим разогревание стекла. На внутренних стенках колбы появились капли воды. Все это – признаки химической реакции . Если углекислый газ вступил в реакцию с едким натром, то можно предполагать, что в колбе создалось разрежение. Чтобы это проверить, после того когда колба охладится до комнатной температуры, опустим конец резиновой трубки прибора в кристаллизатор с водой и откроем зажим. Вода быстро устремится в колбу. Наше предположение о разрежении в колбе подтвердилось – углекислый газ взаимодействует с едким натром. Одним из продуктов реакции является вода. Каков состав образовавшегося твердого вещества?

NaOH + CO 2 = H 2 O + ? + Q

Известно, что углекислому газу соответствует гидрат оксида (окисла) – угольная кислота Н 2 СO 3 . Образовавшееся в колбе твердое вещество – соль угольной кислоты – углекислый натрий Na 2 CO 3 .

Для образования молекулы углекислого натрия потребуется две молекулы едкого натра:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O + Q

При взаимодействии углекислого газа с едким натром получилась соль углекислый натрий Na 2 CO 3 и вода.

Помимо углекислого газа, есть еще многие оксиды (окислы) (SO 2 , SO 3 , SiO 2 , Р 2 O 5 и др.), которые взаимодействуют со щелочами с образованием соли и воды.

Что еще почитать