Схема подключения солнечных батарей: к контроллеру, к аккумулятору и обслуживаемым системам. Рассчитываем и изготавливаем солнечные батареи своими руками Схема солнечной электростанции своими руками

Купить гелиоустановку для дома или же для дачи не составляет труда. Но цена подобных систем нередко оказывается чрезмерно завышенной. А между тем их изготовление своими руками – вовсе не такой невозможный процесс, как кажется на первый взгляд. Достаточно подобрать нужные компоненты и произвести соответствующие расчеты. Разумеется, также необходимы определенные навыки работы с электрооборудованием (для подключения аккумуляторов, инверторов и т.д.).

Что для этого нужно?

Самодельная солнечная электростанция должна состоять из нескольких главных частей. Все они вполне доступны по цене и продаются в специализированных магазинах.

Фотомодули

Прежде всего необходимы сами фотоэлементы. Их количество и площадь определяются на основе норм энергопотребления и среднесолнечной географической активности. Каждый модуль можно собрать и самостоятельно, купив только кремниевые фотоячейки. Также можно приобрести уже готовые гелиоблоки, если их параметры удовлетворяют всем требованиям.

Аккумуляторные батареи

Их наличие необходимо для предотвращения перебоев энергоснабжения. Если солнечная электростанция не объединена с другими энергоисточниками, то именно данные аккумуляторы будут поддерживать жизнеобеспечение дома в пасмурные дни.

Контроллеры заряда

Представляют собой электронные устройства, предназначенные для предохранения аккумуляторов от чрезмерной зарядки/разрядки. При полной зарядке батареи они снижают вырабатываемый солнечным модулем ток до величины, позволяющей компенсировать саморазряд. В случае же критической разрядки эти контроллеры прерывают подачу электроэнергии на бытовые устройства. Если собрать солнечную электростанцию самостоятельно и оснастить ее подобными приборами, то срок службы установки значительно увеличится.

Инверторы

Это устройства, преобразующие постоянный ток от гелиоячеек в переменный, от которого «запитано» все бытовое оборудование. Кром того, инверторы производят электричество лучшего качества, чем то, которое поступает из местных энергосетей. Как правило, изготовление солнечной электростанции своими руками подразумевает использование синусоидальных моделей. Дело в том, что такие инверторы менее дороги и идеально подходят именно для домашних сетей. Еще одно назначение этих приборов – роль своеобразного «буфера» между домашней энергосистемой и коммунальной, что позволяет передавать избыток сгенерированного электричества в общую сеть.

Кабели

Ни одна солнечная электростанция не обходится без специальных коммутационных кабелей. Для минимизации энергопотерь кабели между элементами системы должны пролегать по наиболее коротким путям и иметь соответствующее сечение (не менее 4-6мм2). Внешние кабели должны быть устойчивы ко всем погодным явлениям.

Особенности компоновки

Чтобы созданная вами солнечная электростанция работала максимально эффективно, она должна быть спроектирована по определенной схеме. Вкратце эту схему можно изобразить таким образом. Постоянный ток от фотоэлементов подается на контроллер заряда. Как правило, при этом он проходит через специальную соединительную коробку. После контроллера ток попадает на аккумуляторную батарею, и часть его используется для накопления энергии. За аккумуляторной батареей располагается инвертор, который преобразует этот постоянный ток в переменный. Далее энергопоток распределяется на бытовые нагрузки. Причем лучше всего использовать для каждой группы нагрузок свой инвертор.

Монтаж домашней солнечной станции

В первую очередь необходимо расположить на крыше дома солнечные модули. Нужно помнить, что они должны располагаться под прямым углом к падающим лучам, а отклонение не должно превышать 15°. Причем если солнечная электростанция будет функционировать круглый год, то батареи надо поместить под углом +15° относительно географической широты. Для летней эксплуатации лучше придерживаться угла -15°.

Как правило, гелиомодули устанавливаются рядами на наклонных крышах, один ряд над другим. Такой монтаж подразумевает необходимость выдерживания расстояния между рядами. Это необходимо, чтобы модули не затеняли друг друга. Данное расстояние должно составлять минимум 1,7 высоты самих фотобатарей.

Все дополнительное оборудование (инверторы, аккумуляторы, зарядные контроллеры и т.д.) лучше располагать в отдельном техническом помещении. В этом случае уменьшится длина коммутационных кабелей (а значит, и энергопотери), и собранная система будет работать эффективнее.

Установить на крыше солнечные фотоэлементы, которые за день зарядят аккумуляторы, а вечером пользоваться дармовой энергией - это путь к полной независимости от государственного электроснабжения, цен на газ и так далее.

Преимуществ у домашней солнечной электростанции предостаточно:

  1. Простота установки и подключения. Не надо строить высокую башню, как для ветровой электростанции, бетонировать фундамент.
  2. Для строительства не нужны большие площади. Многие укладывают светоактивные листы на крышу частного дома.
  3. Простой и нематериалозатратный монтаж сильно сокращает денежные расходы.
  4. Возможно, по мере накопления средств, добавлять к имеющимся панелям новые, увеличивая мощность установки в целом, чего нельзя сделать для ветровой станции.
  5. Отсутствуют вращающиеся части, которые нужно смазывать, подтягивать. Профилактический осмотр солнечных элементов специалисты рекомендуют проводить раз в 1–2 года.
  6. Может эксплуатироваться без капитального ремонта до 25 лет.
  7. Все компоненты электроустановки подвозятся к месту установки в собранном виде.
  8. Солнечные станции бесшумны, безопасны для людей, не мешают птицам. Они самые экологически безопасные среди зелёных технологий.

Перейдем к недостаткам:

  1. Ограничено применение в некоторых регионах количеством солнечных дней.
  2. Имеют низкий КПД и слабую мощность, особенно в хмурые зимние дни, по сравнению с другими источниками энергии.

Подбор PV-элементов

Черные фотоэлектрические панели, photovoltaic PV-элементы, те, которые в диковинку видеть на крышах российских домов, сплошь покрывают любые строения в Японии. А японцы очень практичны и не будут городить то, от чего мало проку. Главная задача - правильно выбрать тип солнечного элемента.

В продаже представлены четыре типа фотоэлектрических элементов:

  1. монокристаллические;
  2. поликристаллические;
  3. аморфные;
  4. тонкоплёночные.
  • Монокристаллические делают из отполированного листа кремния. Примерно 1 кВт энергии от таких изделий можно получить с площади 7 квадратных метров.
  • Поликристаллические кремниевые менее производительные, чем первые. Чтобы получить 1 кВт уже потребуется занять площадь более 8 кв. метров.
  • Аморфные наиболее экономичны при изготовлении: аморфный кремний наносится тонким слоем на подложку и расходуется гораздо меньше. Эти батареи имеют самую низкую мощность и относительно дешевы.
  • Тонкопленочные имеют наибольший КПД в 25 процентов, по сравнению с показателем 12–17 у первых трёх типов. Могут вырабатывать энергию при слабом освещении, даже зимой в облачную погоду. Производят такие пленки на нескольких американских заводах для промышленного использования. Стоят они очень дорого.

Оптимальным вариантом для южной полосы: Одесса – Ростов на Дону – Астрахань – побережье северное Каспийского моря являются монокристаллические элементы. Можно собрать эффективную солнечную установку мощностью до 500 кВт/час за месяц.

Другие компоненты солнечной электростанции

  1. Инвертор , преобразующий постоянный ток в переменный. Фотоэлектрические элементы вырабатывают постоянный ток низкого напряжения, а большинство бытовых приборов работает на переменном высоком напряжении.
  2. Аккумуляторы , сохраняющие энергию для ночного времени.
  3. Контроллер – зарядное устройство, не допускающее перезарядки аккумуляторов и защищающее от утечки обратного тока на PV-элементы ночью.
  4. Автоматическое реле , которое при полной разрядке аккумуляторов переключает питание домашних приборов к общей сети.
  5. Электросчетчик , остается для контроля потребленной энергии.

Цена солнечной установки

Покупать солнечную электростанцию под ключ, к примеру, СЭС-5 удобно тем, что специалисты компании-производителя сами всё привезут, соберут, подключат, проверят и гарантию дадут.


Стоимость СЭС-5, вместе с монтажом составляет 8250, 9100 долларов. Такая система замечательна тем, что излишки выработанной энергии можно продать в общую сеть по зеленому тарифу. Установка состоит из 25 фотоэлектрических элементов, средней производительностью за месяц – 521 кВт/час. Есть установки равной мощности по цене 15000 долларов. Если в вашем доме все бытовые приборы расходуют за сутки около 10 кВт/час, то этой электростанции вполне достаточно, чтобы всё светилось, крутилось. Кроме отопления, конечно.

Обогрев дома зимой такая электростанция не потянет. Надо увеличить количество солнечных элементов и аккумуляторов как минимум вдвое, соответственно и цена возрастет вдвое.

Если же комплектовать домашнюю электростанцию самостоятельно, то собранная установка обойдется в 8032 доллара. Из расчета, если каждый компонент будет стоить:

  • PV-элементы Yabang Solar YBP 250-60 (250 Вт, 24 В), 20 штук - 4250 долларов;
  • контроллер (зарядное устройство) - 25 долларов;
  • аккумуляторы SIAP PzS 4 APH 420 (2 В, 420 А), 24 шт. - 3624 доллара;
  • инвертор - 69 долларов;
  • автоматическое реле - 33 доллара;
  • электросчетчик - 31 доллар.

Итого: если умудрится и электростанцию для дома, то можно сэкономить лишь 218 долларов.

Солнечная батарея собранная своими руками Шаг 14: Веб-приложение и интерфейс телефона – Самонаводящиеся солнечные панели с управлением от мобильника Самонаводящиеся солнечные панели с управлением от мобильника – Этап 13: настройка модуля Electric Imp для HTTP соединения

Статья рассматривает практическое применение солнечных батарей, подробно описывает необходимые для бесперебойного электроснабжения узлы, самостоятельное подключение и настройку солнечных батарей.

Оборудование системы электроснабжения: ассортимент, характеристики

В предыдущей статье мы рассмотрели виды солнечных батарей. Но в системах генерации солнечной энергии эти элементы являются лишь первичными преобразователями. Для создания полноценной домашней электростанции нам понадобится такой комплект оборудования:

  • контроллер заряда аккумуляторной батареи
  • аккумуляторная батарея (АКБ)
  • инвертор напряжения

Контроллеры заряда АКБ бывают двух типов: ШИМ-контроллеры (PWM-контроллеры) и ОТММ-контроллеры (MPPT-контроллеры).

ШИМ-контроллер более простое и более дешевое устройство, управляющее зарядом АКБ. КПД ШИМ-контроллера обычно выше, чем у ОТММ-контроллера в силу того, что на начальном этапе зарядки он подключает аккумулятор практически напрямую к солнечной батарее без преобразования генерируемого напряжения. ОТММ-контроллеры рекомендуют использовать с модулями с нестандартным выходным напряжением от 28 В и выше.

Экономически оправданным использование ОТММ-контроллеров будет в системах генерации номинальной мощностью более 400 Вт. Еще одно основание для использования такого контроллера — проектирование солнечной станции для круглогодичной выработки электроэнергии. В пасмурные зимние дни при зарядке аккумуляторов ОТММ-контроллер проявит себя с лучшей стороны.

Аккумулятор в системе солнечного электроснабжения играет роль буфера, накапливающего электрическую энергию.

В отличие от всего остального оборудования гелиостанции аккумулятор является расходным элементом. Поэтому чем дольше он проработает без замены, тем меньше будет срок окупаемости приобретенных вами компонентов. Чтобы АКБ прослужила долго, нужно ответственно подойти к его выбору. Основные параметры АКБ, интересующие потенциального владельца, — это:

  • напряжение (Вольт, В) — в продаже есть аккумуляторы для солнечных батарей на напряжение 12, 24 и 48 В. Для небольших домашних станций мощностью 200-300 Вт вполне подходят АКБ на 12 В;
  • электрическая емкость (Ампер⋅час, А⋅ч) — характеризует количество электроэнергии, которую можно аккумулировать. Соответственно, чем больше этот параметр, тем больше электросистема может проработать в автономном режиме (в пасмурную погоду или в темное время суток);
  • уровень саморазряда (% от номинальной емкости) — чем ниже этот параметр, тем лучше АКБ.

Инвертор напряжения предназначен для преобразования постоянного напряжения аккумулятора в переменное напряжение сети 220 В, питающей бытовую нагрузку.

На рынке есть большой ассортимент инверторов, обладающих разнообразными функциями. Среди самых важных параметров следует отметить следующие:

  • мощность инвертора;
  • напряжение первичной цепи (напряжение подключаемого аккумулятора);
  • наличие встроенных защит (от перегрузки, от переполюсовки аккумулятора, от короткого замыкания в нагрузке, от чрезмерного разряда аккумулятора);
  • синусоидальность выходного напряжения (принципиально, если в подключаемой нагрузке есть двигатели, например, стиральные машины, холодильники, циркуляционные насосы, вентиляторы и т. п.).

Следует также отметить, что избыточное количество функций приводит лишь к удорожанию прибора и усложнению его настройки и эксплуатации.

Схема подключения оборудования гелиостанции

Сборка схемы солнечной электростанции достаточно проста. Ниже будет приведена последовательность подключений, проиллюстрированная фотографиями. Для сборки простой системы используется солнечная панель с поликристаллическими элементами, контроллер заряда и аккумулятор. Сборку начинаем с подключения кабеля к солнечной батарее.

Для батарей, которые идут в комплекте с кабелем, этот шаг не требуется. К выходным клеммам контроллера подключаем АКБ. Далее провода, идущие от панели, необходимо присоединить к входным клеммам контроллера заряда.

Все присоединения производятся по принципу «+» к «+», а «-» к «-». На входные клеммы инвертора подаем питание от аккумулятора. После включения контроллера заряда и инвертора мы видим, что генерируемое солнечной панелью электричество начинает зарядку аккумулятора.

Для того чтобы определить полярность выводов солнечной батареи, достаточно замерить напряжение на клеммах с помощью мультиметра. Если возле показаний величины напряжения стоит знак «минус», то положение черного щупа соответствует плюсовой клемме (проверьте правильность подключения щупов перед измерением). Если знак «минус» отсутствует, то положение черного щупа соответствует отрицательной клемме батареи.

Монтаж солнечных панелей и вспомогательного электрооборудования

Монтаж электрооборудования гелиостанции производится медным проводом. Сечение медного провода для одной панели стоит выбирать не менее 2,5 мм 2 . Это обусловлено тем, что нормальная плотность тока в медном проводнике 5 ампер на 1 мм 2 . То есть при сечении 2,5 мм 2 допустимый ток будет составлять 12,5 А.

При этом ток короткого замыкания панели RZMP-130-T мощностью 145 Вт составляет всего 8,5 А. При объединении нескольких панелей с параллельным подключением сечение общего выходного кабеля должно подбираться исходя из максимального суммарного тока всех панелей по вышеописанной концепции (5 А на 1 мм 2).

В продаже есть разнообразные кабели для подключения солнечных батарей. Их отличительная особенность в том, что внешняя изоляция кабеля подверглась специальной обработке и имеет повышенную стойкость к ультрафиолетовому излучению. Покупать такие кабели необязательно. Солнечные батареи можно подключить кабелем с обычной ПВХ-изоляцией, но проложить его в гофрированном рукаве, который предназначен для прокладки внешней проводки. Такой вариант обойдется на 30-40% дешевле.

Контроллер заряда АКБ и инвертор необходимо разместить в сухом помещении с комнатной температурой, например, в кладовке или прихожей. Размещать это оборудование вне помещения нецелесообразно, так как электронные узлы аппаратуры не должны подвергаться значительным колебаниям температуры и влажности. Саму аккумуляторную батарею можно разместить вместе с электроникой.

Если вы решили использовать кислотные или щелочные аккумуляторы, то следует их разместить в хорошо проветриваемом нежилом помещении, так как при их эксплуатации выделяются вредные для здоровья испарения электролита. Кроме того, в помещении с аккумуляторами не должно быть источников искровой и огневой опасности, так как выделяющиеся кислород и водород в плохо проветриваемых помещениях могут образовать взрывоопасную смесь.

Солнечная панель может устанавливаться двумя способами:

  • неподвижная установка предполагает стационарное размещение панелей на крыше дома или на кронштейне, закрепленном на стене или фундаменте. При этом панели должны быть направлены на юг, горизонтальный наклон панелей должен составлять угол, равный широте местности плюс 15°. Широту вашего местоположения можно определить, например, по показаниям GPS-навигатора или в сервисе Google Maps;
  • подвижная установка панелей производится на траверсу, которая способна поворачиваться азимутально (в направлении движения солнца вдоль горизонта) и зенитально, наклоняя панели для того, чтобы солнечные лучи падали на них перпендикулярно. Такая система установки позволяет увеличить КПД используемых солнечных батарей, но требует дополнительных ощутимых финансовых затрат на конструкцию траверсы, приводные двигатели и систему для их управления.

Пути повышения эффективности автономного электроснабжения

Для повышения эффективности солнечной электростанции можно идти двумя путями: увеличивать количество генерируемой электроэнергии с одной стороны и уменьшать её потребление с другой. Пути для увеличения генерируемой электроэнергии могут быть следующие:

  • установка солнечных батарей на подвижную траверсу или на механизм управления зенитальным наклоном (полумера, но тоже достаточно эффективная, в основном для монокристаллических панелей);
  • использование качественных аккумуляторов с малым процентом саморазряда и долгим сроком службы без значительного снижения емкости;
  • регулярное техническое обслуживание системы: чистка панелей от пыли и снега, обслуживание разъемных и клеммных соединений с целью уменьшения контактных сопротивлений и, как следствие, потерь мощности.

Со стороны нагрузки энергоэффективность может быть увеличена следующим образом:

  • выделение цепи низковольтного питания напрямую от аккумулятора, например, для подключения светодиодного освещения. Это позволит избежать двойного преобразования энергии в инверторе;
  • отключение инвертора при отключении нагрузки на его выходе, так как инвертор, работающий вхолостую, все равно потребляет небольшое количество энергии;
  • установка совместно с освещением датчиков движения с таймером, чтобы исключить досадное расходование электроэнергии из-за того, что просто забыли выключить лампу в прихожей.

Влад Тараненко,рмнт.ру

Решил представить вашему вниманию статью о том, как сделать солнечную электростанцию своими руками .

Конструкция отличается от подобных электростанций улучшенной электронной начинкой :

  • аккумуляторы имеет большую емкость;
  • эффективный контроллер заряда;
  • улучшенная электрическая безопасность;
  • больше выходов;
  • цифровые дисплеи показывают количество потребленной и генерированной электроэнергии.

Если вы хотите изготовить электростанцию или просто вас заинтересовало строение данного устройства, то тогда вам будет интересна данная статья.

Шаг 1: Что необходимо для того, чтобы построить такую систему

Первое, что нужно сделать, приступая к планированию проекта – это определиться , какую мощность вы желаете получить от системы. Обеспечить электроэнергией весь дом, было бы замечательно, но тогда эта система будет дорогой и утратить свою мобильность. Моя электростанция может обеспечивать энергией лишь небольшие ЖК-телевизор, пару 12 Вт энергосберегающих лампочек, цифровой ресивер, проигрыватель компакт-дисков и радиоприемник. Также есть возможность заряжать мобильные телефоны и другие маломощные устройства.

Очень важно определить цены на компоненты, что будут использоваться в проекте. Хотелось сделать все как лучше, поэтому остановил выбор на контроллере PS-30M 30 Amp Morningstar Charge.

Этот контроллер заряда использует широтно-импульсный модулятор для плавной подзарядки батареи, после полной зарядки системы.

Для батарейного блока было приобретено два Trojan T-105 , в одном 6 В , а суммарный вольтаж 12 В и 225 Aч . Ёмкость аккумулятора огромная и достаточная для питания большего количества электроприборов.

Важность выбора основных элементов системы заключается в том, что их параметры необходимы для расчета величины генерированной энергии. ЖК-телевизор и ресивер потребляют 2,2 А постоянного тока на 12 В, энергоэффективное освещение потребляет всего 1 А для 12 Вт лампочки. В то время, как телефон/ GPS во время зарядки потребляет в разы меньше энергии.

Пользуясь телевизор по 3 часа в день, он будет потреблять 6.6 Aч. Освещение в течении 4-5 часов потребляет до 4 Aч, в то время как зарядка портативных устройств потянет на 2 Aч. Суммарная величина будет 12.6 Aч. Заряд батареи глубокого цикла не должен опускаться ниже 50% от полной ёмкости. Для продления срока службы батарей в работе следует использовать меньший цикл разрядки. Поэтому батареи с 30Aч будет достаточно.

В моем регионе на земля солнечный свет падает в течении 6 часов . Поэтому для восстановления заряда батарей потребуется 50 Вт с солнечных панелей и приблизительно 5 часов солнечной активности.

Воспользовавшись формулой мощности Вт = В*А , рассчитаем среднею величину тока с солнечной панели при максимальной мощности 50 Вт/17 В = 2.94 А

Для того, чтобы зарядить батареи при использовании солнечных панелей необходимо затратить 13 Aч / 2.94 А = 4.76 часа прямого солнечного света.

В реальном мире все будет по-другому:

  • Панели закрыты защитными покрытиями;
  • Пасмурная погода;
  • Температура батарей;
  • Сечение проводов;
  • Длина проводки;
  • Другие потери.

Поэтому эффективнее использовать аккумулятор с большим емкостным зарядом. В таком случае можно использовать такую систему несколько раз, без последствий для её элементов, если погодные условия на следующий день не будут подходить для эффективной зарядки с помощью солнечных панелей. 225 Aч хватит с излишком, но лучше иметь больше, чем нужно.

Шаг 2: Планируем проект

Следующий шаг заключается в планировании того, как будет выглядит проект. Экспериментируя с вариантами дизайна установки, были проработаны различные конструкции. Для проектирования пользовались программой Microsoft Word. Это поможет понять расстановку компонентов и проявит аспекты дизайна, которые не будут функциональными.

Было приобретено два Turnigy ваттметра , что наиболее часто используются в авиа моделировании. Эти индикаторы с интеллектом показывают напряжение, силу тока, ватт-часы, ампер-часы, минимальное напряжение и максимальное значение потребляемого тока, что идеально подходят для использовании в системе солнечных панелей. Используя один прибор можно будет контролировать, сколько ватт энергии и сколько ампер-часов в сутки производят солнечные панели, а другой – сколько ватт используется и какой ёмкостной заряд остался в батареях.

После различных вариантов по компоновке элементов, что смонтированы в отдельных отсеках, внешних и внутренних аккумуляторных батарей, широких и узких установок, был принят вариант с наклонной приборной панелью, вертикально установленным контроллером заряда и отдельным батарейным блоком для удобства транспортировки.

Шаг 3: Изготавливаем кожух батарейного блока

Первым этапом будет создание внешнего блока батарей. Для строительства использовалась 12 мм ДСП , общая масса конструкции вместе с батареями составила 56 кг . Ролики и ручки установлены для перемещения установки.

Имея размеры установки, расчертим большом лист ДСП. После чего вырезаем элементы тумб и собираем их, как показано на изображениях.

Шаг 4: Основной блок

После того, как был собран батарейный блок, пришло время построить основную часть. Повторяем процедуру: большой лист ДСП размечаем его по размерам. Вырезаем все с помощью пилой по дереву .

Это самый простой способ, чтобы вырезать длинные прямые линии. Таким образом, большой кусок ДСП разбивается на более мелкие куски, которыми легко управлять. После использования пилы по дереву, необходимо воспользоваться наждачной бумагой для снятия заусенцев.

Вместо пилы, можно использовать электролобзик , с ним работа пойдет быстрее и легче, но линии от лобзика могут быть не такими ровными.

После того, как все элементы панелей вырезаны, необходимо проверить соответствие размеров и форм разработанному плану-модели. Для каркаса устройства используем бруски 20*20 мм , для их соединения воспользуемся 30 мм шурупами.

После завершения основной конструкции, приступаем к монтажу электронных компонентов. Сначала устанавливаем разъёмы на переднюю панель, так как они легче монтируется. Соединением два гнезда для вилок и три для автомобильной зарядки, что наиболее подходят для питания устройств непосредственно от 12 В.

Следующее, что подключаем:

  • Переключатели;
  • Радио;
  • Контроллеры заряда;
  • Счетчики.

Счетчики поставляемые Turnigy заключены в пластиковый корпус, который легко снимается, путем выкручивания четырех маленьких винтов. ЖК-дисплеи счетчиков припаяны непосредственно к плате, это означает, что не надо возиться с припаиваем шлейфа от дисплея к контактным площадкам на микросхеме.

Для защитных дисплеев счетчиков воспользуемся 3 мм оргстеклом . Для его резки можно воспользоваться ножом или пилой по металлу . Рамы защитных стекол монтируются на передней панели и закрепляться с помощью горячего термоклея .

В проекте используются хромированные металлические переключатели с двумя положениями работы. Красочные светодиодные кольца подсвечивают гнезда 12 В зарядки.

Контроллер заряда просто прикручен к задней панели с помощью болтов. Наиболее дорогим элементом проекта выступают батареи, поэтому за ними нужен особый уход.

Задняя часть блока выступает основой для множества портов, восьми входов/выходов для радио, включая четыре акустических выхода, два выхода предусилителя, 1 вход для микрофона и 1 выход для сабвуфер.

Попытаемся понять подход к выбору автономной солнечной системы, какие факторы имеют большее, а какие меньшее значение.

Прежде всего, надо определить, сколько энергии вам понадобится в месяц, и, чтобы стоимость солнечной электростанции не стала фантастически высокой, по мере возможности уменьшить потребности. Затем необходимо определить, сколько солнечной энергии можно получить в той местности, где будет работать солнечная установка. Примерные данные приводятся в метеорологических справочниках, кое-какую информацию по солнечной инсоляции можно найти в Интернете. Обычно уровень солнечной инсоляции выражается в Ваттах/м2 с разбивкой по месяцам. Причём сезонные колебания могут быть очень значительными.

Как выбирать солнечную батарею?

Если предполагается использовать солнечную электростанцию круглогодично, расчёт надо производить по месяцам с наихудшими параметрами по инсоляции (конечно, если предполагается использовать только солнечную энергию). КПД солнечных батарей для расчётов надо принимать не выше 14% (а лучше 12%) , т.к., несмотря на КПД элементов 16 или даже 17 % (а чаще используются элементы с КПД 14-15%), часть излучения отразится от поверхности стекла закрывающего элементы (даже если используется антибликовое стекло), часть излучения погасится в толщине стекла, т.к. не вся поверхность солнечной батареи закрыта кремниевыми пластинами (между ними есть зазоры 2-3 мм). Кроме этого некоторые элементы имеют обрезанные углы, что также уменьшает полезную площадь. Некоторые изготовители приводят примерную выработку энергии в месяц при разных уровнях солнечного излучения.


Теперь, чтобы определить количество солнечных батарей , необходимо разделить желаемую потребность в энергии на возможную выработку энергии одной батареей в те месяцы, когда будет использоваться солнечная электростанция. Естественно, расчёт ведется по самым наихудшим параметрам по инсоляции.

Например, установка будет эксплуатироваться круглогодично, потребность в энергии 100 кВт час/месяц, одна батарея из выбранных вами произведёт в декабре не более 2 кВт-час энергии, 100: 2 = 50 батарей. При тех же условиях, но неизвестной производительности батареи, а известной её площади 0,7 м², определяем, что за месяц будет произведено примерно 20 х 0,7 х 0,12(КПД) = 1,68 кВт-час энергии (инсоляция в декабре составляет примерно 20 кВт-час/м²). Для определения количества солнечных батарей необходимо разделить желаемое количество энергии на выработку одной батареи: 100: 1,68 =59,5 шт., округляем в большую сторону 60 шт.

Следует отметить, что все эти расчёты носят приблизительный, ориентировочный характер, т.к. количество солнечных дней может сильно отличаться в разные годы. Всегда надо учитывать, что запас только улучшает параметры системы.

Увеличение производительности солнечных батарей – это отдельная большая тема. Можно отметить только несколько способов увеличения производительности:

Выбор оптимального угла установки . Желательно, чтобы поверхность солнечной батареи располагалась перпендикулярно к лучам солнца, с максимальным отклонением в ту или иную сторону на не более, чем 15°. В связи с тем, что солнце в течении года постоянно меняет высоту над горизонтом, желательно устанавливать солнечные батареи под тем углом, который обеспечивает максимальный выигрыш по производительности в нужное время. Например, если предполагается использовать солнечную электростанцию круглогодично, то батареи устанавливают под углом + 15° к широте местности, а если только в летние месяцы, то под углом – 15° от широты местности.

Поворот солнечной батареи вслед за солнцем в течение дня (применим только для небольших систем), таким образом можно увеличить выработку энергии вплоть до 50% от выработки в стационарном положении.

Что еще почитать