Внешние энергетические уровни: особенности строения и их роль во взаимодействиях между атомами. Химия Что такое энергетический уровень атома в химии

1 (2 балла). Распределение электронов по энергетическим уровням в атоме калия:

А. 2е, 8е, 8е, 1е В. . 2е, 8е,

18е, 8е, 1е
Б. 2е, 1е Г. 2е, 8е, 1е

2 (2 балла). Число электронов на внешнем электронном слое у атома алюминия:

А. 1 Б. 2 В. 3 Г.4

3 (2 балла). Простое вещество с наиболее ярко выраженными металлическими свойствами:

А. Кальций Б. Барий В. Стронций Г. Радий

4 (2 балла). Вид химической связи в простом веществе - алюминий:

А. Ионная Б. Ковалентная полярная

В. Металлическая Г. Ковалентная неполярная

5 (2 балла). Число энергетических уровней у элементов одной подгруппы сверху вниз:

А. Изменяется периодически. Б. Не изменяется.

В. Увеличивается. Г. Уменьшается.

6 (2 балла). Атом лития отличается от иона лития:

А. 3арядом ядра. Б. Числом электронов на внешнем энергетическом уровне.

В. Числом протонов. Г. Числом нейтронов.

7 (2 балла.). Наименее энергично реагирует с водой:

А. Барий. В. Магний.

Б. Кальций. Г. Стронций

8 (2 балла). С раствором серной кислоты не взаимодействует:

А. Алюминий. В. Натрий

Б. Магний. Г. Медь

9 (2 балла). Гидроксид калия не взаимодействует с веществом, формула которого:

А. Na2O В. АlСl3

Б. Р2O5 Г. Zn(NO3)2

10 (2 балла). Ряд, в котором все вещества реагируют с железом:

А. НСl, СО2, СО

Б. CO2, HCl, S

В. Н2, O2, СаO

Г. O2, СuSO4, Н2SO4

11 (9 баллов). Предложите три способа получения гидроксида натрия. Ответ подтвердите уравнениями реакций.

12 (6 баллов). Осуществите цепочку химических превращений, составив уравнения реакций в молекулярном и ионном видах, назовите продукты реакций:

FeCl2 → Fe(OH)2 → FeSO4 → Fe(OH)2

13 (6 баллов). Как, используя любые реактивы (вещества) и цинк, получить его оксид, основание, соль? Составьте уравнения реакций в молекулярном виде.

14 (4 балла). Составьте уравнение химической реакции взаимодействия лития с азотом. Определите восстановитель и окислитель в этой реакции

1 Периодическое повторение числа электронов на внешнем уровне атома объясняет_______________ 2. Количество энергетических уровней атома можно

определить по:
A. номером группы;
Б. номеру периода;
B. порядковым номером.

4. Какая из характеристик химических элементов не меняется в главных подгруппах:
А радиус атома;
Б число электронов на внешнем уровне;
В. число энергетических уровней.

5. Общее у строении атомов элементов с порядковыми номерами 7 и 15:

A. число электронов на внешнем уровне, Б. заряд ядра;

B. число энергетических уровней.

Установите соответствие между символом химичесого элемента (в заданном порядке) и числом электронов на внешнем энергетическом уровне его атома.Из букв

Соответствующих правильным ответам, вы составите название установки, которая позволит человечеству еще глубже познать строение атома(9 букв).

Число е на Символ элемента

Энергетическом

уровне Mg Si I F C Ba Sn Ca Br

2 к а п о л й с е м

4 а о в к а т д ч я

7 в й л л н г о л р

1 (3 балла). Распределение электронов по энергетическим уровням в атоме натрия-

А. 2 ē, 1 ē Б. 2 ē, 4 ē В. 2 ē, 8 ē, 1ē. Г. 2 ē, 8 ē, 3ē.

2 (4 балла) Номер периода в Периодической системе Д. И. Менделеева, в котором нет химических элементов-металлов: А. 1. Б. 2. В. 3. Г. 4.

3 (3 балла). Вид химической связи в простом веществе кальции:

A. Ионная. Б. Ковалентная полярная. B. Ковалентная неполярная. Г. Металлическая.

4 (3 балла). Простое вещество с наиболее ярко выраженными металлическими свойствами:

А. Алюминий. Б. Кремний. В. Магний. Г. Натрий.

5 (3 балла). Радиус атомов элементов 2-го периода с увеличением заряда ядра от щелочного металла к галогену: A.Изменяется периодически. Б. Не изменяется. B. Увеличивается. Г. Уменьшается.

6 (3 балла). Атом магния отличается от иона магния:

A. Зарядом ядра. Б. Зарядом частицы. B. Числом протонов. Г. Числом нейтронов.

7 (3 балла). Наиболее энергично реагирует с водой:

А. Калий. Б. Литий. В. Натрий. Г. Рубидий.

8 (3 балла). С разбавленной серной кислотой не взаимодействует:

А. Алюминий. Б. Барий. В. Железо. Г. Ртуть.

9 (3 балла). Гидроксид бериллия не взаимодействует с веществом, формула которого:

A. NaOH(p р). Б. NaCl(p_p). В. НС1(р_р). Г. H2SО4.

10 (3 балла). Ряд, в котором все вещества реагируют с кальцием:

А. СО2, Н2, НС1. В. NaOH, Н2О, НС1. Б. С12, Н2О, H2SО4. Г. S, H2SО4, SО3.

ЧАСТЬ Б. Задания со свободным ответом

11 (9 баллов). Предложите три способа получения сульфата железа (II). Ответ подтвердите уравнениями реакций.

12 (6 баллов). Определите вещества X, Y, Z, запишите их химические формулы.

Fe(OH)3(t)= X(+HCl)= Y(+NaOH)=Z(t) Fe2О3

13 (6 баллов). Как, используя любые реактивы (вещества) и алюминий, получить оксид, амфотерный гидроксид? Составьте уравнения реакций в молекулярном виде.

14 (4 балла). Расположите металлы: медь, золото, алюминий, свинец в порядке увеличения плотности.

15 (5 баллов). Рассчитайте массу металла, полученного из 160 г оксида меди (II).

Ответ от Ксения Гареева [гуру]
номеру периода


Ответ от Slava mikailov [новичек]


Ответ от Проспорить [гуру]
Энергетический уровень
Материал из Википедии - свободной энциклопедии
Энергетический уровень - возможные значения энергии квантовых систем, т. е. систем, состоящих из микрочастиц (электронов, протонов и др. элементарных частиц, атомных ядер, атомов, молекул и т. д.) и подчиняющихся законам квантовой механики. Характеризует определённое состояние микрочастицы. Различают электронные и внутриядерные энергетические уровни.
[править]
Электронные энергетические уровни
Современное понятие о орбитальной модели атома, при котором электроны переходят с одного энергетического уровня на другой, а разница между энергетическими уровнями определяет размер выделяемого или поглощаемого кванта. При этом в промежутках между энергетическими уровнями электроны находиться не могут. Эти промежутки получили название запрещённая энергетическая зона.
В качестве примера можно привести электрон в орбитальной модели атома - в зависимости от значений главного квантового числа n и орбитального квантового числа l изменяется уровень энергии, которой обладает электрон. Соответственно каждой паре значений чисел n и l соответствует определённый энергетический уровень.
[править]
Внутриядерные энергетические уровни
Термин появился благодаря исследованию радиоктивности. Радиационное излучение разделяется на три части: альфа-лучи, бета-лучи и гамма-лучи. Исследования показали, что альфа-излучение состояло из атомов гелия, бета-излучение является потоком быстро движущихся электронов, а исследование гамма-лучей показало, что энергии электронных уровней недостаточно для их возникновения. Стало понятно, что источник радиоктивного излучения (гамма-лучей) нужно искать внутри атомного ядра, т. е. существуют внутриядерные энергетические уровни, энергия которых и переходит в фотоны гамма-излучения. Гамма-лучи расширили спектр известных электромагнитных волн, и все волны короче 0,01 нм являются гамма-лучами.

Сегодня поведаем о том, что такое энергетический уровень атома, когда человек сталкивается с этим понятием, и где оно применяется.

Школьная физика

Люди впервые встречаются с естественными науками в школе. И если на седьмом году обучения дети еще находят новые знания по биологии и химии интересными, то в старших классах их начинают бояться. Когда приходит черед атомной физики, уроки по этой дисциплине уже внушают только отвращение к непонятным задачам. Однако стоит помнить, что у всех открытий, которые сейчас превратились в скучные школьные предметы, нетривиальная история и целый арсенал полезных применений. Узнавать, как устроен мир - это как открывать шкатулку с чем-то интересным внутри: всегда хочется найти потайное отделение и обнаружить там еще одно сокровище. Сегодня мы расскажем об одном из базовых физики, строении вещества.

Неделимый, составной, квантовый

С древнегреческого языка слово «атом» переводится как «неделимый, наименьший». Такое представление - следствие истории науки. Некоторые древние греки и индийцы верили, что все на свете состоит из мельчайших частиц.

В современной истории были произведены намного раньше физических исследований. Ученые семнадцатого и восемнадцатого веков работали в первую очередь для увеличения военной мощи страны, короля или герцога. А чтобы создать взрывчатку и порох, надо было понять, из чего они состоят. В итоге исследователи выяснили: некоторые элементы нельзя разделить дальше определенного уровня. Значит, существуют наименьшие носители химических свойств.

Но они ошибались. Атом оказался составной частицей, а его способность изменяться носит квантовый характер. Об этом говорят и переходы энергетических уровней атома.

Положительное и отрицательное

В конце девятнадцатого века ученые вплотную подошли к изучению мельчайших частиц вещества. Например, было понятно: атом содержит как положительно, так и отрицательно заряженные составляющие. Но была неизвестна: расположение, взаимодействие, соотношение веса его элементов оставались загадкой.

Резерфорд поставил опыт по рассеянию альфа-частиц тонкой Он выяснил, что в центре атомов находятся тяжелые положительные элементы, а по краям расположены очень легкие отрицательные. Значит, носителями разных зарядов являются не похожие друг на друга частицы. Это объясняло заряд атомов: к ним можно было добавить элемент или удалить его. Равновесие, которое поддерживало нейтральность всей системы, нарушалось, и атом приобретал заряд.

Электроны, протоны, нейтроны

Позже выяснилось: легкие отрицательные частицы - это электроны, а тяжелое положительное ядро состоит из двух видов нуклонов (протонов и нейтронов). Протоны отличались от нейтронов только тем, что первые были положительно заряженными и тяжелыми, а вторые имели только массу. Изменить состав и заряд ядра сложно: для этого требуются неимоверные энергии. А вот электроном атом делится гораздо легче. Есть более электроотрицательные атомы, которые охотнее «отбирают» электрон, и менее электроотрицательные, которые скорее «отдадут» его. Так формируется заряд атома: если электронов избыток, то он отрицательный, а если недостаток - то положительный.

Длинная жизнь вселенной

Но такое строение атома озадачивало ученых. Согласно господствовавшей в те времена классической физике, электрон, который все время двигался вокруг ядра, должен был непрерывно излучать электромагнитные волны. Так как этот процесс означает потерю энергии, то все отрицательные частицы вскоре потеряли бы свою скорость и упали на ядро. Однако вселенная существует уже очень долго, а всемирной катастрофы еще не произошло. Назревал парадокс слишком старой материи.

Постулаты Бора

Объяснить несоответствие смогли постулаты Бора. Тогда это были просто утверждения, скачки в неизвестное, которые не подтверждались расчетами или теорией. Согласно постулатам, существовали в атоме энергетические уровни электронов. Каждая отрицательно заряженная частица могла находиться только на этих уровнях. Переход между орбиталями (так назвали уровни) осуществляется прыжком, при этом выделяется или поглощается квант электромагнитной энергии.

Позже открытие Планком кванта объяснило такое поведение электронов.

Свет и атом

Количество энергии, необходимой для перехода, зависит от расстояния между энергетическими уровнями атома. Чем они дальше друг от друга, тем больше выделяемый или поглощаемый квант.

Как известно, свет - это и есть квант электромагнитного поля. Таким образом, когда электрон в атоме переходит с более высокого на более низкий уровень, он творит свет. При этом действует и обратный закон: когда электромагнитная волна падает на предмет, она возбуждает его электроны, и они переходят на более высокую орбиталь.

Кроме того, энергетические уровни атома индивидуальны для каждого вида химического элемента. Узор расстояний между орбиталями различается для водорода и золота, вольфрама и меди, брома и серы. Поэтому анализ спектров испускания любого объекта (в том числе и звезды) однозначно определяет, какие вещества и в каком количестве в нем присутствуют.

Применяется этот метод невероятно широко. Спектральный анализ используется:

  • в криминалистике;
  • в контроле качества еды и воды;
  • в производстве товаров;
  • в создании новых материалов;
  • в усовершенствовании технологий;
  • в научных экспериментах;
  • в исследовании звезд.

Этот перечень лишь примерно показывает, насколько полезным оказалось открытие электронных уровней в атоме. Электронные уровни - самые грубые, самые большие. Существуют более мелкие колебательные, и еще более тонкие вращательные уровни. Но они актуальны только для сложных соединений - молекул и твердых тел.

Надо сказать, что структура ядра до сих пор не исследована до конца. Например, нет ответа на вопрос о том, почему определенному количеству протонов соответствует именно такое число нейтронов. Ученые предполагают, что атомное ядро тоже содержит некий аналог электронных уровней. Однако до сих пор это не доказано.

– частицы, образующие молекулы .

Попытайся представить, насколько малы атомы по сравнению с величиной самих молекул на таком примере.

Наполним резиновый шарик газом. Если предположить, что через тонкий прокол из шарика будет выходить миллион молекул в секунду, то для вылета всех молекул из шарика понадобится 30 млрд лет. А ведь в состав одной молекулы может входить два, три, а может, и несколько десятков или даже несколько тысяч атомов!

Современная техника позволила сфотографировать и молекулу, и атом с помощью специального микроскопа. Молекулу удалось сфотографировать при увеличении в 70 млн раз, а атом – в 260 млн раз.

Долгое время ученые считали, что атом неделим. Даже слово атом в переводе с греческого языка означает «неделимый». Однако многолетние исследования показали, что, несмотря на маленькие размеры, атомы состоят из еще более мелких частей (элементарных частиц ).

Не правда ли, строение атома напоминает Солнечную систему ?

В центре атома – ядро , вокруг которого на некотором расстоянии движутся электроны

Ядро – самая тяжелая часть атома, в нем сосредоточена масса атома.

У ядра и электронов существуют электрические заряды, противоположные по знаку, но равные по величине.

Ядро имеет положительный заряд, электроны – отрицательный, поэтому в целом атом не заряжен.

Запомни

Все атомы имеют ядро и электроны. Атомы отличаются друг от друга: массой и зарядом ядра; количеством электронов.

Задание

Подсчитай количество электронов в атомах алюминия, углерода, водорода. Заполни таблицу.

· Название атома

Количество электронов в атоме

Атом алюминия

Атом углерода

Атом водорода

Ты хочешь узнать больше о строении атома? Тогда читай дальше.

Заряд ядра атома определяется порядковым номером элемента .

Например, порядковый номер водорода равен 1 (определяем по Периодической таблице Менделеева), значит, заряд ядра атома равен +1.

Порядковый номер кремния равен 14 (определяем по Периодической таблице Менделеева), значит, заряд ядра атома кремния равен +14.

Чтобы атом был электронейтрален, число положительных и отрицательных зарядов в атоме должно быть одинаково

(в сумме получится ноль).

Число электронов (отрицательно заряженных частиц) равно заряду ядра (положительно заряженных частиц) и равно порядковому номеру элемента .

В атоме водорода 1 электрон, кремния- 14 электронов.

Электроны в атоме движуться по энергетическим уровням.

Число энергетических уровне в атоме определяется номером периода, в котором находится элемент (тоже определяем по Периодической таблице Менделеева)

Например, водород - элемент первого периода, значит у него

1 энергетический уровень, а кремний - элемент третьего периода, следовательно 14 электронов распределены по трем энергетическим уровным. Кислород и углерод- элементы третьего периода, поэтому электроны движуться по трем энергетическим уровням.

Задание

1.Какой заряд ядра в атомах химических элементов, изображенных на рисунке?

2. Сколько энергетических уровней в атоме алюминия?

2. Строение ядер и электронных оболочек атомов

2.6. Энергетические уровни и подуровни

Наиболее важной характеристикой состояния электрона в атоме является энергия электрона, которая согласно законам квантовой механики изменяется не непрерывно, а скачкообразно, т.е. может принимать только вполне определенные значения. Таким образом, можно говорить о наличии в атоме набора энергетических уровней.

Энергетический уровень - совокупность АО с близкими значениями энергии.

Энергетические уровни нумеруют с помощью главного квантового числа n , которое может принимать только целочисленные положительные значения (n = 1, 2, 3, ...). Чем больше значение n , тем выше энергия электрона и данного энергетического уровня. Каждый атом содержит бесконечное число энергетических уровней, часть из которых в основном состоянии атома заселена электронами, а часть - нет (эти энергетические уровни заселяются в возбужденном состоянии атома).

Электронный слой - совокупность электронов, находящихся на данном энергетическом уровне.

Иными словами, электронный слой - это энергетический уровень, содержащий электроны.

Совокупность электронных слоев образует электронную оболочку атома.

В пределах одного и того же электронного слоя электроны могут несколько различаться по энергии, в связи с чем говорят, что энергетические уровни расщепляются на энергетические подуровни (подслои ). Число подуровней, на которые расщепляется данный энергетический уровень, равно номеру главного квантового числа энергетического уровня:

N (подур) = n (уровн) . (2.4)

Подуровни изображаются с помощью цифр и букв: цифра отвечает номеру энергетического уровня (электронного слоя), буква - природе АО, формирующей подуровни (s -, p -, d -, f -), например: 2p -подуровень (2p -АО, 2p -электрон).

Таким образом, первый энергетический уровень (рис. 2.5) состоит из одного подуровня (1s ), второй - из двух (2s и 2p ), третий - из трех (3s , 3p и 3d ), четвертый из четырех (4s , 4p , 4d и 4f ) и т.д. Каждый подуровень содержит определенное число АО:

N (AO) = n 2 . (2.5)

Рис. 2.5. Схема энергетических уровней и подуровней для первых трех электронных слоев

1. АО s -типа имеются на всех энергетических уровнях, p -типа появляются начиная со второго энергетического уровня, d -типа - с третьего, f -типа - с четвертого и т.д.

2. На данном энергетическом уровне может быть одна s -, три p -, пять d -, семь f -орбиталей.

3. Чем больше главное квантовое число, тем больше размеры АО.

Поскольку на одной АО не может находиться более двух электронов, общее (максимальное) число электронов на данном энергетическом уровне в 2 раза больше числа АО и равно:

N (e) = 2n 2 . (2.6)

Таким образом, на данном энергетическом уровне максимально может быть 2 электрона s -типа, 6 электронов р -типа и 10 электронов d -типа. Всего же на первом энергетическом уровне максимальное число электронов равно 2, на втором - 8 (2 s -типа и 6 р -типа), на третьем - 18 (2 s -типа, 6 р -типа и 10 d -типа). Эти выводы удобно обобщить в табл. 2.2.

Таблица 2.2

Связь между главным квантовым числом, числом э

Что еще почитать