Сходимость ряда 1 3n n 3 2. Сходимость ряда онлайн. Как сравнивать ряды

Проверить сходимость ряда можно несколькими способами. Во-первых можно просто найти сумму ряда . Если в результате мы получим конечное число, то такой ряд сходится . Например, поскольку

то ряд сходится. Если нам не удалось найти сумму ряда, то следует использовать другие методы для проверки сходимости ряда.

Одним из таких методов является признак Даламбера

здесь и соответственно n-ый и (n+1)-й члены ряда, а сходимость определяется значением D: Если D < 1 - ряд сходится, если D >

В качестве примера, исследуем сходимость ряда с помощью признака Даламбера. Сначала запишем выражения для и . Теперь найдем соответствующий предел :

Поскольку , в соответствии с признаком Даламбера, ряд сходится.

Еще одним методом, позволяющим проверить сходимость ряда является радикальный признак Коши , который записывается следующим образом:

здесь n-ый член ряда, а сходимость, как и в случае признака Даламбера, определяется значением D: Если D < 1 - ряд сходится, если D > 1 - расходится. При D = 1 - данный признак не даёт ответа и нужно проводить дополнительные исследования.

В качестве примера, исследуем сходимость ряда с помощью радикального признака Коши. Сначала запишем выражение для . Теперь найдем соответствующий предел:

Поскольку title="15625/64>1"> , в соответствии с радикальным признаком Коши, ряд расходится.

Стоит отметить, что наряду с перечисленными, существуют и другие признаки сходимости рядов, такие как интегральный признак Коши, признак Раабе и др.

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha позволяет протестировать сходимость ряда. При этом, если калькулятор в качестве суммы ряда выдает конкретное число, то ряд сходится. В противном случае, необходимо обращать внимание на пункт «Тест сходимости ряда». Если там присутствует словосочетание «series converges», то ряд сходится. Если присутствует словосочетание «series diverges», то ряд расходится.

Ниже представлен перевод всех возможных значений пункта «Тест сходимости ряда»:

Текст на английском языке Текст на русском языке
By the harmonic series test, the series diverges. При сравнении исследуемого ряда с гармоническим рядом , исходный ряд расходится.
The ratio test is inconclusive. Признак Даламбера не может дать ответа о сходимости ряда.
The root test is inconclusive. Радикальный признак Коши не может дать ответа о сходимости ряда.
By the comparison test, the series converges. По признаку сравнения, ряд сходится
By the ratio test, the series converges. По признаку Даламбера, ряд сходится
By the limit test, the series diverges. На основнии того, что title="Предел n-ого члена ряда при n->oo не равен нулю или не существует"> , или указанный предел не существует, сделан вывод о том, что ряд расходится.

Найдем сумму ряда чисел. Если не получается ее найти, то система вычисляет сумму ряда с определенной точностью.

Сходимость ряда

Данный калькулятор умеет определять - сходится ли ряд, также показывает - какие признаки сходимости срабатывают, а какие - нет.

Также умеет определять сходимость степенных рядов.

Также строится график ряда, где можно увидеть скорость сходимости ряда (или расходимости).

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа

Гармонический ряд - сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда :

∑ k = 1 ∞ 1 k = 1 + 1 2 + 1 3 + 1 4 + ⋯ + 1 k + ⋯ {\displaystyle \sum _{k=1}^{\mathcal {\infty }}{\frac {1}{k}}=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+\cdots +{\frac {1}{k}}+\cdots } .

Энциклопедичный YouTube

    1 / 5

    Числовые ряды. Основные понятия - bezbotvy

    ✪ Доказательство расходимости гармонического ряда

    ✪ Числовые ряды-9. Сходимость и расходимость ряда Дирихле

    ✪ Консультация №1. Мат. анализ. Ряд Фурье по тригонометрической системе. Простейшие свойства

    ✪ РЯДЫ. Обзор

    Субтитры

Сумма первых n членов ряда

Отдельные члены ряда стремятся к нулю, но его сумма расходится. n-той частичной суммой s n гармонического ряда называется n-тое гармоническое число:

s n = ∑ k = 1 n 1 k = 1 + 1 2 + 1 3 + 1 4 + ⋯ + 1 n {\displaystyle s_{n}=\sum _{k=1}^{n}{\frac {1}{k}}=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+\cdots +{\frac {1}{n}}}

Некоторые значения частичных сумм

s 1 = 1 s 2 = 3 2 = 1 , 5 s 3 = 11 6 ≈ 1,833 s 4 = 25 12 ≈ 2,083 s 5 = 137 60 ≈ 2,283 {\displaystyle {\begin{matrix}s_{1}&=&1\\\\s_{2}&=&{\frac {3}{2}}&=&1{,}5\\\\s_{3}&=&{\frac {11}{6}}&\approx &1{,}833\\\\s_{4}&=&{\frac {25}{12}}&\approx &2{,}083\\\\s_{5}&=&{\frac {137}{60}}&\approx &2{,}283\end{matrix}}} s 6 = 49 20 = 2 , 45 s 7 = 363 140 ≈ 2,593 s 8 = 761 280 ≈ 2,718 s 10 3 ≈ 7,484 s 10 6 ≈ 14,393 {\displaystyle {\begin{matrix}s_{6}&=&{\frac {49}{20}}&=&2{,}45\\\\s_{7}&=&{\frac {363}{140}}&\approx &2{,}593\\\\s_{8}&=&{\frac {761}{280}}&\approx &2{,}718\\\\s_{10^{3}}&\approx &7{,}484\\\\s_{10^{6}}&\approx &14{,}393\end{matrix}}}

Формула Эйлера

При значение ε n → 0 {\displaystyle \varepsilon _{n}\rightarrow 0} , следовательно, для больших n {\displaystyle n} :

s n ≈ ln ⁡ (n) + γ {\displaystyle s_{n}\approx \ln(n)+\gamma } - формула Эйлера для суммы первых n {\displaystyle n} членов гармонического ряда. Пример использования формулы Эйлера
n {\displaystyle n} s n = ∑ k = 1 n 1 k {\displaystyle s_{n}=\sum _{k=1}^{n}{\frac {1}{k}}} ln ⁡ (n) + γ {\displaystyle \ln(n)+\gamma } ε n {\displaystyle \varepsilon _{n}} , (%)
10 2,93 2,88 1,7
25 3,82 3,80 0,5

Более точная асимптотическая формула для частичной суммы гармонического ряда:

s n ≍ ln ⁡ (n) + γ + 1 2 n − 1 12 n 2 + 1 120 n 4 − 1 252 n 6 ⋯ = ln ⁡ (n) + γ + 1 2 n − ∑ k = 1 ∞ B 2 k 2 k n 2 k {\displaystyle s_{n}\asymp \ln(n)+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-{\frac {1}{252n^{6}}}\dots =\ln(n)+\gamma +{\frac {1}{2n}}-\sum _{k=1}^{\infty }{\frac {B_{2k}}{2k\,n^{2k}}}} , где B 2 k {\displaystyle B_{2k}} - числа Бернулли .

Данный ряд расходится, однако ошибка вычислений по нему никогда не превышает половины первого отброшенного члена.

Теоретико-числовые свойства частичных сумм

∀ n > 1 s n ∉ N {\displaystyle \forall n>1\;\;\;\;s_{n}\notin \mathbb {N} }

Расходимость ряда

S n → ∞ {\displaystyle s_{n}\rightarrow \infty } при n → ∞ {\displaystyle n\rightarrow \infty }

Гармонический ряд расходится очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около 10 43 элементов ряда).

Расходимость гармонического ряда можно продемонстрировать, сравнив его с телескопическим рядом :

v n = ln ⁡ (n + 1) − ln ⁡ n = ln ⁡ (1 + 1 n) ∼ + ∞ 1 n {\displaystyle v_{n}=\ln(n+1)-\ln n=\ln \left(1+{\frac {1}{n}}\right){\underset {+\infty }{\sim }}{\frac {1}{n}}} ,

частичная сумма которого, очевидно, равна:

∑ i = 1 n − 1 v i = ln ⁡ n ∼ s n {\displaystyle \sum _{i=1}^{n-1}v_{i}=\ln n\sim s_{n}} .

Доказательство Орема

Доказательство расходимости можно построить, группируя слагаемые следующим образом:

∑ k = 1 ∞ 1 k = 1 + [ 1 2 ] + [ 1 3 + 1 4 ] + [ 1 5 + 1 6 + 1 7 + 1 8 ] + [ 1 9 + ⋯ ] + ⋯ > 1 + [ 1 2 ] + [ 1 4 + 1 4 ] + [ 1 8 + 1 8 + 1 8 + 1 8 ] + [ 1 16 + ⋯ ] + ⋯ = 1 + 1 2 + 1 2 + 1 2 + 1 2 + ⋯ . {\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {1}{k}}&{}=1+\left[{\frac {1}{2}}\right]+\left[{\frac {1}{3}}+{\frac {1}{4}}\right]+\left[{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}\right]+\left[{\frac {1}{9}}+\cdots \right]+\cdots \\&{}>1+\left[{\frac {1}{2}}\right]+\left[{\frac {1}{4}}+{\frac {1}{4}}\right]+\left[{\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}}\right]+\left[{\frac {1}{16}}+\cdots \right]+\cdots \\&{}=1+\ {\frac {1}{2}}\ \ \ +\quad {\frac {1}{2}}\ \quad +\ \qquad \quad {\frac {1}{2}}\qquad \ \quad \ +\quad \ \ {\frac {1}{2}}\ \quad +\ \cdots .\end{aligned}}}

Последний ряд, очевидно, расходится. Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).

Альтернативное доказательство расходимости

предлагаем читателю убедиться в ошибочности этого доказательства

Разница между n {\displaystyle n} -м гармоническим числом и натуральным логарифмом n {\displaystyle n} сходится к постоянной Эйлера - Маскерони .

Разница между различными гармоническими числами никогда не равна целому числу и никакое гармоническое число, кроме H 1 = 1 {\displaystyle H_{1}=1} , не является целым .

Связанные ряды

Ряд Дирихле

Обобщённым гармоническим рядом (или рядом Дирихле) называют ряд

∑ k = 1 ∞ 1 k α = 1 + 1 2 α + 1 3 α + 1 4 α + ⋯ + 1 k α + ⋯ {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k^{\alpha }}}=1+{\frac {1}{2^{\alpha }}}+{\frac {1}{3^{\alpha }}}+{\frac {1}{4^{\alpha }}}+\cdots +{\frac {1}{k^{\alpha }}}+\cdots } .

Обобщённый гармонический ряд расходится при α ⩽ 1 {\displaystyle \alpha \leqslant 1} и сходится при α > 1 {\displaystyle \alpha >1} .

Сумма обобщённого гармонического ряда порядка α {\displaystyle \alpha } равна значению дзета-функции Римана :

∑ k = 1 ∞ 1 k α = ζ (α) {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k^{\alpha }}}=\zeta (\alpha)}

Для чётных это значение явно выражается через число пи , например, ζ (2) = π 2 6 {\displaystyle \zeta (2)={\frac {\pi ^{2}}{6}}} , а уже для α=3 его значение аналитически неизвестно.

Другой иллюстрацией расходимости гармонического ряда может служить соотношение ζ (1 + 1 n) ∼ n {\displaystyle \zeta (1+{\frac {1}{n}})\sim n} . Поэтому говорят, что такой ряд обладает с вероятностью 1 , и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности , вычисленная в точках +2 или −2 имеет значение:

0,124 999 999 999 999 999 999 999 999 999 999 999 999 999 7 642 …,

отличаясь от ⅛ на менее чем 10 −42 .

«Истончённый» гармонический ряд

Ряд Кемпнера (англ. )

Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшаяся сумма сходится к числу <80 . Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Однако из этого будет ошибочно заключать о сходимости исходного гармонического ряда, так как с ростом разрядов в числе n {\displaystyle n} , все меньше слагаемых берется для суммы «истончённого» ряда. То есть в конечном счете отбрасывается подавляющее большинство членов образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию.

Ответ : ряд расходится.

Пример №3

Найти сумму ряда $\sum\limits_{n=1}^{\infty}\frac{2}{(2n+1)(2n+3)}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$ S_n=u_1+u_2+u_3+u_4+\ldots+u_n=\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}. $$

Почему я пишу именно $\frac{2}{3\cdot 5}$, а не $\frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $\lim_{n\to\infty}S_n$, но если мы просто запишем:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}\right), $$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $\frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $\frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$ \frac{2}{(2n+1)(2n+3)}=\frac{A}{2n+1}+\frac{B}{2n+3}=\frac{A\cdot(2n+3)+B\cdot(2n+1)}{(2n+1)(2n+3)}. $$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$ 2=A\cdot(2n+3)+B\cdot(2n+1). $$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем - будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$ 2=2An+3A+2Bn+B;\\ 2=(2A+2B)n+3A+B. $$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0\cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$ \left\{\begin{aligned} & A+B=0;\\ & 3A+B=2. \end{aligned}\right. $$

Доказательство будем проводить методом математической индукции. На первом шаге нужно проверить, выполнено ли доказываемое равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ при $n=1$. Мы знаем, что $S_1=u_1=\frac{2}{15}$, но даст ли выражение $\frac{1}{3}-\frac{1}{2n+3}$ значение $\frac{2}{15}$, если подставить в него $n=1$? Проверим:

$$ \frac{1}{3}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2\cdot 1+3}=\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}. $$

Итак, при $n=1$ равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ выполнено. На этом первый шаг метода математической индукции закончен.

Предположим, что при $n=k$ равенство выполнено, т.е. $S_k=\frac{1}{3}-\frac{1}{2k+3}$. Докажем, что это же равенство будет выполнено при $n=k+1$. Для этого рассмотрим $S_{k+1}$:

$$ S_{k+1}=S_k+u_{k+1}. $$

Так как $u_n=\frac{1}{2n+1}-\frac{1}{2n+3}$, то $u_{k+1}=\frac{1}{2(k+1)+1}-\frac{1}{2(k+1)+3}=\frac{1}{2k+3}-\frac{1}{2(k+1)+3}$. Согласно сделанному выше предположению $S_k=\frac{1}{3}-\frac{1}{2k+3}$, поэтому формула $S_{k+1}=S_k+u_{k+1}$ примет вид:

$$ S_{k+1}=S_k+u_{k+1}=\frac{1}{3}-\frac{1}{2k+3}+\frac{1}{2k+3}-\frac{1}{2(k+1)+3}=\frac{1}{3}-\frac{1}{2(k+1)+3}. $$

Вывод: формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при $n=k+1$. Следовательно, согласно методу математической индукции, формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при любом $n\in N$. Равенство доказано.

В стандартном курсе высшей математики обычно довольствуются "вычёркиванием" сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Найдём значение $\lim_{n\to\infty}S_n$:

Вывод: заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю именно этот способ:) Давайте запишем частичную сумму в сокращённом варианте:

$$ S_n=\sum\limits_{k=1}^{n}u_k=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}. $$

Мы получили ранее, что $u_k=\frac{1}{2k+1}-\frac{1}{2k+3}$, поэтому:

$$ S_n=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right). $$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $\frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $\frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$ S_n =\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\ldots+\frac{1}{2n+1}-\frac{1}{2n+3}=\\ =\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+1}-\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+3}\right). $$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство можно оформить более компактно:

$$ S_n=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}. $$

Теперь преобразуем выражения $\frac{1}{2k+1}$ и $\frac{1}{2k+3}$ к одному виду. Я полагаю удобным приводить к виду большей дроби (хотя можно и к меньшей, это дело вкуса). Так как $\frac{1}{2k+1}>\frac{1}{2k+3}$ (чем больше знаменатель, тем меньше дробь), то будем приводить дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$.

Выражение в знаменателе дроби $\frac{1}{2k+3}$ я представлю в таком виде:

$$ \frac{1}{2k+3}=\frac{1}{2k+2+1}=\frac{1}{2(k+1)+1}. $$

И сумму $\sum\limits_{k=1}^{n}\frac{1}{2k+3}$ теперь можно записать так:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Если равенство $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показать\скрыть

У нас был ряд $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$. Давайте вместо $k+1$ введём новую переменную, - например, $t$. Итак, $t=k+1$.

Как изменялась старая переменная $k$? А изменялась она от 1 до $n$. Давайте выясним, как же будет изменяться новая переменная $t$. Если $k=1$, то $t=1+1=2$. Если же $k=n$, то $t=n+1$. Итак, выражение $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$ теперь стало таким: $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$.

$$ \sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}. $$

У нас есть сумма $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$. Вопрос: а не всё ли равно, какую букву использовать в этой сумме? :) Банально записывая букву $k$ вместо $t$, получим следующее:

$$ \sum\limits_{t=2}^{n+1}\frac{1}{2t+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Вот так и получается равенство $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$.

Таким образом, частичную сумму можно представить в следующем виде:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Заметьте, что суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ и $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. "Забирая" первый элемент из суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ будем иметь:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+1}=\frac{1}{2\cdot 1+1}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}. $$

"Забирая" последний элемент из суммы $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$, получим:

$$\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2(n+1)+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}.$$

Тогда выражение для частичной суммы примет вид:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\\ =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2n+3}. $$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$ S_n=\sum\limits_{k=1}^{n}u_k =\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)} =\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\\ =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\frac{1}{3}-\frac{1}{2n+3}. $$

Напомню, что мы приводили дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $\frac{1}{2k+1}$ в виде $\frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показать\скрыть

$$ S_n =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\sum\limits_{k=0}^{n-1}\frac{1}{2k+3}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\\ =\frac{1}{3}+\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}-\left(\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}+\frac{1}{2n+3}\right) =\frac{1}{3}-\frac{1}{2n+3}. $$

Итак, $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Находим предел $\lim_{n\to\infty}S_n$:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{3}-\frac{1}{2n+3}\right)=\frac{1}{3}-0=\frac{1}{3}. $$

Заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Ответ : $S=\frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.

Что еще почитать